This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 844

2009 Iran MO (3rd Round), 2

2-There is given a trapezoid $ ABCD$.We have the following properties:$ AD\parallel{}BC,DA \equal{} DB \equal{} DC,\angle BCD \equal{} 72^\circ$. A point $ K$ is taken on $ BD$ such that $ AD \equal{} AK,K \neq D$.Let $ M$ be the midpoint of $ CD$.$ AM$ intersects $ BD$ at $ N$.PROVE $ BK \equal{} ND$.

2024 China Team Selection Test, 19

$n$ is a positive integer. An equilateral triangle of side length $3n$ is split into $9n^2$ unit equilateral triangles, each colored one of red, yellow, blue, such that each color appears $3n^2$ times. We call a trapezoid formed by three unit equilateral triangles as a "standard trapezoid". If a "standard trapezoid" contains all three colors, we call it a "colorful trapezoid". Find the maximum possible number of "colorful trapezoids".

2017 Romania Team Selection Test, P1

Let $ABCD$ be a trapezium, $AD\parallel BC$, and let $E,F$ be points on the sides$AB$ and $CD$, respectively. The circumcircle of $AEF$ meets $AD$ again at $A_1$, and the circumcircle of $CEF$ meets $BC$ again at $C_1$. Prove that $A_1C_1,BD,EF$ are concurrent.

1978 Czech and Slovak Olympiad III A, 5

Let $ABCS$ be an isosceles trapezoid. Denote $A',B',C',D'$ the incenters of triangles $BCD,CDA,$ $DAB,ABC,$ respectively. Show that $A',B',C',D'$ are vertices of a rectangle.

2014 Indonesia MO Shortlist, G3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

Ukrainian TYM Qualifying - geometry, 2017.1

In an isosceles trapezoid $ABCD$ with bases $AD$ and $BC$, diagonals intersect at point $P$, and lines $AB$ and $CD$ intersect at point $Q$. $O_1$ and $O_2$ are the centers of the circles circumscribed around the triangles $ABP$ and $CDP$, $r$ is the radius of these circles. Construct the trapezoid ABCD given the segments $O_1O_2$, $PQ$ and radius $r$.

2011 India National Olympiad, 4

Suppose five of the nine vertices of a regular nine-sided polygon are arbitrarily chosen. Show that one can select four among these five such that they are the vertices of a trapezium.

Estonia Open Junior - geometry, 1996.1.4

In a trapezoid, the two non parallel sides and a base have length $1$, while the other base and both the diagonals have length $a$. Find the value of $a$.

2013 NIMO Problems, 13

In trapezoid $ABCD$, $AD \parallel BC$ and $\angle ABC + \angle CDA = 270^{\circ}$. Compute $AB^2$ given that $AB \cdot \tan(\angle BCD) = 20$ and $CD = 13$. [i]Proposed by Lewis Chen[/i]

1996 Baltic Way, 4

$ABCD$ is a trapezium where $AD\parallel BC$. $P$ is the point on the line $AB$ such that $\angle CPD$ is maximal. $Q$ is the point on the line $CD$ such that $\angle BQA$ is maximal. Given that $P$ lies on the segment $AB$, prove that $\angle CPD=\angle BQA$.

2002 India IMO Training Camp, 13

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

2008 Postal Coaching, 1

Let $ABCD$ be a trapezium in which $AB$ is parallel to $CD$. The circles on $AD$ and $BC$ as diameters intersect at two distinct points $P$ and $Q$. Prove that the lines $PQ,AC,BD$ are concurrent.

1999 USAMO, 6

Let $ABCD$ be an isosceles trapezoid with $AB \parallel CD$. The inscribed circle $\omega$ of triangle $BCD$ meets $CD$ at $E$. Let $F$ be a point on the (internal) angle bisector of $\angle DAC$ such that $EF \perp CD$. Let the circumscribed circle of triangle $ACF$ meet line $CD$ at $C$ and $G$. Prove that the triangle $AFG$ is isosceles.

2018 Cyprus IMO TST, 2

Consider a trapezium $AB \Gamma \Delta$, where $A\Delta \parallel B\Gamma$ and $\measuredangle A = 120^{\circ}$. Let $E$ be the midpoint of $AB$ and let $O_1$ and $O_2$ be the circumcenters of triangles $AE \Delta$ and $BE\Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_1 E O_2$.

2012 China Western Mathematical Olympiad, 1

$O$ is the circumcenter of acute $\Delta ABC$, $H$ is the Orthocenter. $AD \bot BC$, $EF$ is the perpendicular bisector of $AO$,$D,E$ on the $BC$. Prove that the circumcircle of $\Delta ADE$ through the midpoint of $OH$.

2007 QEDMO 4th, 2

Let $ ABCD$ be a trapezoid with $ BC\parallel AD$, and let $ O$ be the point of intersection of its diagonals $ AC$ and $ BD$. Prove that $ \left\vert ABCD\right\vert \equal{}\left( \sqrt{\left\vert BOC\right\vert }\plus{}\sqrt{\left\vert DOA\right\vert }\right) ^{2}$. [hide="Source of the problem"][i]Source of the problem:[/i] exercise 8 in: V. Alekseev, V. Galkin, V. Panferov, V. Tarasov, [i]Zadachi o trapezijah[/i], Kvant 6/2000, pages 37-4.[/hide]

1967 AMC 12/AHSME, 9

Let $K$, in square units, be the area of a trapezoid such that the shorter base, the altitude, and the longer base, in that order, are in arithmetic progression. Then: $\textbf{(A)}\ K \; \text{must be an integer} \qquad \textbf{(B)}\ K \; \text{must be a rational fraction} \\ \textbf{(C)}\ K \; \text{must be an irrational number} \qquad \textbf{(D)}\ K\; \text{must be an integer or a rational fraction} \qquad$ $\textbf{(E)}\ \text{taken alone neither} \; \textbf{(A)} \; \text{nor} \; \textbf{(B)} \; \text{nor} \; \textbf{(C)} \; \text{nor} \; \textbf{(D)} \; \text{is true}$

1993 Greece National Olympiad, 13

Jenny and Kenny are walking in the same direction, Kenny at 3 feet per second and Jenny at 1 foot per second, on parallel paths that are 200 feet apart. A tall circular building 100 feet in diameter is centered midway between the paths. At the instant when the building first blocks the line of sight between Jenny and Kenny, they are 200 feet apart. Let $t$ be the amount of time, in seconds, before Jenny and Kenny can see each other again. If $t$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?

2009 Argentina National Olympiad, 3

Isosceles trapezoid $ ABCD$, with $ AB \parallel CD$, is such that there exists a circle $ \Gamma$ tangent to its four sides. Let $ T \equal{} \Gamma \cap BC$, and $ P \equal{} \Gamma \cap AT$ ($ P \neq T$). If $ \frac{AP}{AT} \equal{} \frac{2}{5}$, compute $ \frac{AB}{CD}$.