This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 405

1958 February Putnam, B1

Tags: triangle , geometry
i) Given line segments $A,B,C,D$ with $A$ the longest, construct a quadrilateral with these sides and with $A$ and $B$ parallel, when possible. ii) Given any acute-angled triangle $ABC$ and one altitude $AH$, select any point $D$ on $AH$, then draw $BD$ and extend until it intersects $AC$ in $E$, and draw $CD$ and extend until it intersects $AB$ in $F$. Prove that $\angle AHE = \angle AHF$.

1986 IMO Shortlist, 17

Given a point $P_0$ in the plane of the triangle $A_1A_2A_3$. Define $A_s=A_{s-3}$ for all $s\ge4$. Construct a set of points $P_1,P_2,P_3,\ldots$ such that $P_{k+1}$ is the image of $P_k$ under a rotation center $A_{k+1}$ through an angle $120^o$ clockwise for $k=0,1,2,\ldots$. Prove that if $P_{1986}=P_0$, then the triangle $A_1A_2A_3$ is equilateral.

2017 Greece National Olympiad, 1

An acute triangle $ABC$ with $AB<AC<BC$ is inscribed in a circle $c(O,R)$. The circle $c_1(A,AC)$ intersects the circle $c$ at point $D$ and intersects $CB$ at $E$. If the line $AE$ intersects $c$ at $F$ and $G$ lies in $BC$ such that $EB=BG$, prove that $F,E,D,G$ are concyclic.

1967 IMO, 4

$A_0B_0C_0$ and $A_1B_1C_1$ are acute-angled triangles. Describe, and prove, how to construct the triangle $ABC$ with the largest possible area which is circumscribed about $A_0B_0C_0$ (so $BC$ contains $B_0, CA$ contains $B_0$, and $AB$ contains $C_0$) and similar to $A_1B_1C_1.$

2012 Bosnia and Herzegovina Junior BMO TST, 4

If $a$, $b$ and $c$ are sides of triangle which perimeter equals $1$, prove that: $a^2+b^2+c^2+4abc<\frac{1}{2}$

2018 Bosnia And Herzegovina - Regional Olympiad, 3

In triangle $ABC$ given is point $P$ such that $\angle ACP = \angle ABP = 10^{\circ}$, $\angle CAP = 20^{\circ}$ and $\angle BAP = 30^{\circ}$. Prove that $AC=BC$

2001 IMO Shortlist, 6

Let $ABC$ be a triangle and $P$ an exterior point in the plane of the triangle. Suppose the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ (or extensions thereof) in $D$, $E$, $F$, respectively. Suppose further that the areas of triangles $PBD$, $PCE$, $PAF$ are all equal. Prove that each of these areas is equal to the area of triangle $ABC$ itself.

1987 IMO Shortlist, 5

Find, with proof, the point $P$ in the interior of an acute-angled triangle $ABC$ for which $BL^2+CM^2+AN^2$ is a minimum, where $L,M,N$ are the feet of the perpendiculars from $P$ to $BC,CA,AB$ respectively. [i]Proposed by United Kingdom.[/i]

2017 Kyiv Mathematical Festival, 2

Tags: triangle , geometry
A triangle $ABC$ is given. Let $D$ be a point on the extension of the segment $AB$ beyond $A$ such that $AD=BC,$ and $E$ be a point on the extension of the segment $BC$ beyond $B$ such that $BE=AC.$ Prove that the circumcircle of the triangle $DEB$ passes through the incenter of the triangle $ABC.$

1985 Bulgaria National Olympiad, Problem 5

Tags: triangle , geometry
Let $P$ be a point on the median $CM$ of a triangle $ABC$ with $AC\ne BC$ and the acute angle $\gamma$ at $C$, such that the bisectors of $\angle PAC$ and $\angle PBC$ intersect at a point $Q$ on the median $CM$. Determine $\angle APB$ and $\angle AQB$.

2013 Bulgaria National Olympiad, 5

Consider acute $\triangle ABC$ with altitudes $AA_1, BB_1$ and $CC_1$ ($A_1 \in BC,B_1 \in AC,C_1 \in AB$). A point $C' $ on the extension of $B_1A_1$ beyond $A_1$ is such that $A_1C' = B_1C_1$. Analogously, a point $B'$ on the extension of A$_1C_1$ beyond $C_1$ is such that $C_1B' = A_1B_1$ and a point $A' $ on the extension of $C_1B_1$ beyond $B_1$ is such that $B_1A' = C_1A_1$. Denote by $A'', B'', C''$ the symmetric points of $A' , B' , C'$ with respect to $BC, CA$ and $AB$ respectively. Prove that if $R, R'$ and R'' are circumradiii of $\triangle ABC, \triangle A'B'C'$ and $\triangle A''B''C''$, then $R, R'$ and $R'' $ are sidelengths of a triangle with area equals one half of the area of $\triangle ABC$.

1975 Putnam, A6

Given three points in space forming an acute-angled triangle, show that we can find two further points such that no three of the five points are collinear and the line through any two is normal to the plane through the other three.

1993 Bundeswettbewerb Mathematik, 3

In the triangle $ABC$, let $A'$ be the intersection of the perpendicular bisector of $AB$ and the angle bisector of $\angle BAC$ and define $B', C'$ analogously. Prove that a) The triangle $ABC$ is equilateral if and only if $A' =B'.$ b) If $A', B'$ and $C'$ are distinct, we have $\angle B' A' C' = 90^{\circ} - \frac{1}{2} \angle BAC.$

1966 Czech and Slovak Olympiad III A, 3

A square $ABCD,AB=s=1$ is given in the plane with its center $S$. Furthermore, points $E,F$ are given on the rays opposite to $CB,DA$, respectively, $CE=a,DF=b$. Determine all triangles $XYZ$ such that $X,Y,Z$ lie in this order on segments $CD,AD,BC$ and $E,S,F$ lie on lines $XY,YZ,ZX$ respectively. Discuss conditions of solvability in terms of $a,b,s$ and unknown $x=CX$.

2000 Moldova National Olympiad, Problem 8

Tags: triangle , geometry
Points $D$ and $N$ on the sides $AB$ and $BC$ and points $E,M$ on the side $AC$ of an equilateral triangle $ABC$, respectively, with $E$ between $A$ and $M$, satisfy $AD+AE=CN+CM=BD+BN+EM$. Determine the angle between the lines $DM$ and $EN$.

1961 IMO Shortlist, 4

Consider triangle $P_1P_2P_3$ and a point $p$ within the triangle. Lines $P_1P, P_2P, P_3P$ intersect the opposite sides in points $Q_1, Q_2, Q_3$ respectively. Prove that, of the numbers \[ \dfrac{P_1P}{PQ_1}, \dfrac{P_2P}{PQ_2}, \dfrac{P_3P}{PQ_3} \] at least one is $\leq 2$ and at least one is $\geq 2$

1996 IMO Shortlist, 2

Let $ P$ be a point inside a triangle $ ABC$ such that \[ \angle APB \minus{} \angle ACB \equal{} \angle APC \minus{} \angle ABC. \] Let $ D$, $ E$ be the incenters of triangles $ APB$, $ APC$, respectively. Show that the lines $ AP$, $ BD$, $ CE$ meet at a point.

2019 Jozsef Wildt International Math Competition, W. 23

If $b$, $c$ are the legs, and $a$ is the hypotenuse of a right triangle, prove that$$\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 5+3\sqrt{2}$$

2004 India IMO Training Camp, 1

Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$. [i]Proposed by C.R. Pranesachar, India [/i]

1966 Bulgaria National Olympiad, Problem 3

Tags: triangle , geometry
(a) In the plane of the triangle $ABC$, find a point with the following property: its symmetrical points with respect to the midpoints of the sides of the triangle lie on the circumscribed circle. (b) Construct the triangle $ABC$ if it is known the positions of the orthocenter $H$, midpoint of the side $AB$ and the midpoint of the segment joining the feet of the heights through vertices $A$ and $B$.

1979 IMO Shortlist, 17

Tags: geometry , angle , triangle
Inside an equilateral triangle $ABC$ one constructs points $P, Q$ and $R$ such that \[\angle QAB = \angle PBA = 15^\circ,\\ \angle RBC = \angle QCB = 20^\circ,\\ \angle PCA = \angle RAC = 25^\circ.\] Determine the angles of triangle $PQR.$

1992 Bulgaria National Olympiad, Problem 5

Tags: geometry , triangle
Points $D,E,F$ are midpoints of the sides $AB,BC,CA$ of triangle $ABC$. Angle bisectors of the angles $BDC$ and $ADC$ intersect the lines $BC$ and $AC$ respectively at the points $M$ and $N$, and the line $MN$ intersects the line $CD$ at the point $O$. Let the lines $EO$ and $FO$ intersect respectively the lines $AC$ and $BC$ at the points $P$ and $Q$. Prove that $CD=PQ$. [i](Plamen Koshlukov)[/i]

1980 IMO Shortlist, 8

Three points $A,B,C$ are such that $B \in ]AC[$. On the side of $AC$ we draw the three semicircles with diameters $[AB], [BC]$ and $[AC]$. The common interior tangent at $B$ to the first two semi-circles meets the third circle in $E$. Let $U$ and $V$ be the points of contact of the common exterior tangent to the first two semi-circles. Denote the area of the triangle $ABC$ as $S(ABC)$. Evaluate the ratio $R=\frac{S(EUV)}{S(EAC)}$ as a function of $r_1 = \frac{AB}{2}$ and $r_2 = \frac{BC}{2}$.

1981 Bulgaria National Olympiad, Problem 2

Tags: geometry , angle , triangle
Let $ABC$ be a triangle such that the altitude $CH$ and the sides $CA,CB$ are respectively equal to a side and two distinct diagonals of a regular heptagon. Prove that $\angle ACB<120^\circ$.

2010 Belarus Team Selection Test, 1.2

Points $H$ and $T$ are marked respectively on the sides $BC$ abd $AC$ of triangle $ABC$ so that $AH$ is the altitude and $BT$ is the bisectrix $ABC$. It is known that the gravity center of $ABC$ lies on the line $HT$. a) Find $AC$ if $BC$=a nad $AB$=c. b) Determine all possible values of $\frac{c}{b}$ for all triangles $ABC$ satisfying the given condition.