This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

Today's calculation of integrals, 872

Let $n$ be a positive integer. (1) For a positive integer $k$ such that $1\leq k\leq n$, Show that : \[\int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt\cos t\ dt=(-1)^{k+1}\frac{2n}{4n^2-1}(\cos \frac{k}{2n}\pi +\cos \frac{k-1}{2n}\pi).\] (2) Find the area $S_n$ of the part expressed by a parameterized curve $C_n: x=\sin t,\ y=\sin 2nt\ (0\leq t\leq \pi).$ If necessary, you may use ${\sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi =\frac 12(\frac{1}{\tan \frac{\pi}{4n}}-1})\ (n\geq 2).$ (3) Find $\lim_{n\to\infty} S_n.$

1998 South africa National Olympiad, 2

Find the maximum value of \[ \sin{2\alpha} + \sin{2\beta} + \sin{2\gamma} \] where $\alpha,\beta$ and $\gamma$ are positive and $\alpha + \beta + \gamma = 180^{\circ}$.

2010 Contests, 3

Let $ I $ be the incenter of triangle $ ABC $. The incircle touches $ BC, CA, AB$ at points $ P, Q, R $. A circle passing through $ B , C $ is tangent to the circle $I$ at point $ X $, a circle passing through $ C , A $ is tangent to the circle $I$ at point $ Y $, and a circle passing through $ A , B $ is tangent to the circle $I$ at point $ Z $, respectively. Prove that three lines $ PX, QY, RZ $ are concurrent.

2008 Kyiv Mathematical Festival, 4

Let $ K,L,M$ and $ N$ be the midpoints of sides $ AB,$ $ BC,$ $ CD$ and $ AD$ of the convex quadrangle $ ABCD.$ Is it possible that points $ A,B,L,M,D$ lie on the same circle and points $ K,B,C,D,N$ lie on the same circle?

2008 Sharygin Geometry Olympiad, 18

(A.Abdullayev, 9--11) Prove that the triangle having sides $ a$, $ b$, $ c$ and area $ S$ satisfies the inequality \[ a^2\plus{}b^2\plus{}c^2\minus{}\frac12(|a\minus{}b|\plus{}|b\minus{}c|\plus{}|c\minus{}a|)^2\geq 4\sqrt3 S.\]

2009 ELMO Problems, 5

Let $ABCDEFG$ be a regular heptagon with center $O$. Let $M$ be the centroid of $\triangle ABD$. Prove that $\cos^2(\angle GOM)$ is rational and determine its value. [i]Evan o'Dorney[/i]

2012 Today's Calculation Of Integral, 833

Let $f(x)=\int_0^{x} e^{t} (\cos t+\sin t)\ dt,\ g(x)=\int_0^{x} e^{t} (\cos t-\sin t)\ dt.$ For a real number $a$, find $\sum_{n=1}^{\infty} \frac{e^{2a}}{\{f^{(n)}(a)\}^2+\{g^{(n)}(a)\}^2}.$

2013 ELMO Shortlist, 3

In $\triangle ABC$, a point $D$ lies on line $BC$. The circumcircle of $ABD$ meets $AC$ at $F$ (other than $A$), and the circumcircle of $ADC$ meets $AB$ at $E$ (other than $A$). Prove that as $D$ varies, the circumcircle of $AEF$ always passes through a fixed point other than $A$, and that this point lies on the median from $A$ to $BC$. [i]Proposed by Allen Liu[/i]

2012 AMC 10, 21

Let points $A=(0,0,0)$, $B=(1,0,0)$, $C=(0,2,0)$, and $D=(0,0,3)$. Points $E,F,G$, and $H$ are midpoints of line segments $\overline{BD},\overline{AB},\overline{AC}$, and $\overline{DC}$ respectively. What is the area of $EFGH$? $ \textbf{(A)}\ \sqrt2 \qquad\textbf{(B)}\ \frac{2\sqrt5}{3} \qquad\textbf{(C)}\ \frac{3\sqrt5}{4} \qquad\textbf{(D)}\ \sqrt3 \qquad\textbf{(E)}\ \frac{2\sqrt7}{3} $

2007 Stanford Mathematics Tournament, 15

Evaluate $\int_{0}^{\infty}\frac{\tan^{-1}(\pi x)-\tan^{-1}x}{x}dx$

2006 Iran MO (3rd Round), 6

Assume that $C$ is a convex subset of $\mathbb R^{d}$. Suppose that $C_{1},C_{2},\dots,C_{n}$ are translations of $C$ that $C_{i}\cap C\neq\emptyset$ but $C_{i}\cap C_{j}=\emptyset$. Prove that \[n\leq 3^{d}-1\] Prove that $3^{d}-1$ is the best bound. P.S. In the exam problem was given for $n=3$.

1987 Vietnam National Olympiad, 2

Let $ f : [0, \plus{}\infty) \to \mathbb R$ be a differentiable function. Suppose that $ \left|f(x)\right| \le 5$ and $ f(x)f'(x) \ge \sin x$ for all $ x \ge 0$. Prove that there exists $ \lim_{x\to\plus{}\infty}f(x)$.

2005 iTest, 5

Tags: trigonometry
$$\sin 30^o + \sin 45^o + \sin 60^o + \sin 90^o + \cos 120^o + \cos 135^o + \cos 150^o + \cos 180^o = ?$$

2004 National Olympiad First Round, 33

Let $ABCD$ be a trapezoid such that $|AB|=9$, $|CD|=5$ and $BC\parallel AD$. Let the internal angle bisector of angle $D$ meet the internal angle bisectors of angles $A$ and $C$ at $M$ and $N$, respectively. Let the internal angle bisector of angle $B$ meet the internal angle bisectors of angles $A$ and $C$ at $L$ and $K$, respectively. If $K$ is on $[AD]$ and $\dfrac{|LM|}{|KN|} = \dfrac 37$, what is $\dfrac{|MN|}{|KL|}$? $ \textbf{(A)}\ \dfrac{62}{63} \qquad\textbf{(B)}\ \dfrac{27}{35} \qquad\textbf{(C)}\ \dfrac{2}{3} \qquad\textbf{(D)}\ \dfrac{5}{21} \qquad\textbf{(E)}\ \dfrac{24}{63} $

2021 AMC 12/AHSME Fall, 13

Tags: trigonometry
The angle bisector of the acute angle formed at the origin by the graphs of the lines $y=x$ and $y=3x$ has equation $y=kx$. What is $k$? $\textbf{(A)} \: \frac{1+\sqrt{5}}{2} \qquad \textbf{(B)} \: \frac{1+\sqrt{7}}{2} \qquad \textbf{(C)} \: \frac{2+\sqrt{3}}{2} \qquad \textbf{(D)} \: 2\qquad \textbf{(E)} \: \frac{2+\sqrt{5}}{2}$

2016 German National Olympiad, 5

Let $A,B,C,D$ be points on a circle with radius $r$ in this order such that $|AB|=|BC|=|CD|=s$ and $|AD|=s+r$. Find all possible values of the interior angles of the quadrilateral $ABCD$.

2010 Princeton University Math Competition, 6

In regular hexagon $ABCDEF$, $AC$, $CE$ are two diagonals. Points $M$, $N$ are on $AC$, $CE$ respectively and satisfy $AC: AM = CE: CN = r$. Suppose $B, M, N$ are collinear, find $100r^2$. [asy] size(120); defaultpen(linewidth(0.7)+fontsize(10)); pair D2(pair P) { dot(P,linewidth(3)); return P; } pair A=dir(0), B=dir(60), C=dir(120), D=dir(180), E=dir(240), F=dir(300), N=(4*E+C)/5,M=intersectionpoints(A--C,B--N)[0]; draw(A--B--C--D--E--F--cycle); draw(A--C--E); draw(B--N); label("$A$",D2(A),plain.E); label("$B$",D2(B),NE); label("$C$",D2(C),NW); label("$D$",D2(D),W); label("$E$",D2(E),SW); label("$F$",D2(F),SE); label("$M$",D2(M),(0,-1.5)); label("$N$",D2(N),SE); [/asy]

1984 All Soviet Union Mathematical Olympiad, 375

Prove that every positive $x,y$ and real $a$ satisfy inequality $x^{\sin ^2a} y^{\cos^2a} < x + y$.

2009 Princeton University Math Competition, 7

Find the maximal positive integer $n$, so that for any real number $x$ we have $\sin^{n}{x}+\cos^{n}{x} \geq \frac{1}{n}$.

2012 Today's Calculation Of Integral, 815

Prove that : $\left|\sum_{i=0}^n \left(1-\pi \sin \frac{i\pi}{4n}\cos \frac{i\pi}{4n}\right)\right|<1.$

2005 Today's Calculation Of Integral, 66

Find the minimum value of $\int_0^{\frac{\pi}{2}} |\cos x -a|\sin x \ dx$

1987 IMO Longlists, 70

In an acute-angled triangle $ABC$ the interior bisector of angle $A$ meets $BC$ at $L$ and meets the circumcircle of $ABC$ again at $N$. From $L$ perpendiculars are drawn to $AB$ and $AC$, with feet $K$ and $M$ respectively. Prove that the quadrilateral $AKNM$ and the triangle $ABC$ have equal areas.[i](IMO Problem 2)[/i] [i]Proposed by Soviet Union.[/i]

2003 China Team Selection Test, 1

Let $g(x)= \sum_{k=1}^{n} a_k \cos{kx}$, $a_1,a_2, \cdots, a_n, x \in R$. If $g(x) \geq -1$ holds for every $x \in R$, prove that $\sum_{k=1}^{n}a_k \leq n$.

2002 All-Russian Olympiad, 2

A quadrilateral $ABCD$ is inscribed in a circle $\omega$. The tangent to $\omega$ at $A$ intersects the ray $CB$ at $K$, and the tangent to $\omega$ at $B$ intersects the ray $DA$ at $M$. Prove that if $AM=AD$ and $BK=BC$, then $ABCD$ is a trapezoid.

2010 Contests, 3

Let $ ABCD$ be a convex quadrilateral. We have that $ \angle BAC\equal{}3\angle CAD$, $ AB\equal{}CD$, $ \angle ACD\equal{}\angle CBD$. Find angle $ \angle ACD$