This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2002 Junior Balkan MO, 1

The triangle $ABC$ has $CA = CB$. $P$ is a point on the circumcircle between $A$ and $B$ (and on the opposite side of the line $AB$ to $C$). $D$ is the foot of the perpendicular from $C$ to $PB$. Show that $PA + PB = 2 \cdot PD$.

2012 Today's Calculation Of Integral, 848

Evaluate $\int_0^{\frac {\pi}{4}} \frac {\sin \theta -2\ln \frac{1-\sin \theta}{\cos \theta}}{(1+\cos 2\theta)\sqrt{\ln \frac{1+\sin \theta}{\cos \theta}}}d\theta .$

2014 Online Math Open Problems, 17

Let $AXYBZ$ be a convex pentagon inscribed in a circle with diameter $\overline{AB}$. The tangent to the circle at $Y$ intersects lines $BX$ and $BZ$ at $L$ and $K$, respectively. Suppose that $\overline{AY}$ bisects $\angle LAZ$ and $AY=YZ$. If the minimum possible value of \[ \frac{AK}{AX} + \left( \frac{AL}{AB} \right)^2 \] can be written as $\tfrac{m}{n} + \sqrt{k}$, where $m$, $n$ and $k$ are positive integers with $\gcd(m,n)=1$, compute $m+10n+100k$. [i]Proposed by Evan Chen[/i]

2010 AIME Problems, 13

Rectangle $ ABCD$ and a semicircle with diameter $ AB$ are coplanar and have nonoverlapping interiors. Let $ \mathcal{R}$ denote the region enclosed by the semicircle and the rectangle. Line $ \ell$ meets the semicircle, segment $ AB$, and segment $ CD$ at distinct points $ N$, $ U$, and $ T$, respectively. Line $ \ell$ divides region $ \mathcal{R}$ into two regions with areas in the ratio $ 1: 2$. Suppose that $ AU \equal{} 84$, $ AN \equal{} 126$, and $ UB \equal{} 168$. Then $ DA$ can be represented as $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

2014 Benelux, 4

Let $ABCD$ be a square. Consider a variable point $P$ inside the square for which $\angle BAP \ge 60^\circ.$ Let $Q$ be the intersection of the line $AD$ and the perpendicular to $BP$ in $P$. Let $R$ be the intersection of the line $BQ$ and the perpendicular to $BP$ from $C$. [list] [*] [b](a)[/b] Prove that $|BP|\ge |BR|$ [*] [b](b)[/b] For which point(s) $P$ does the inequality in [b](a)[/b] become an equality?[/list]

1955 Polish MO Finals, 4

Prove that $$ \sin^2 \alpha + \sin^2 \beta \geq \sin \alpha \sin \beta + \sin \alpha + \sin \beta - 1.$$

1999 Turkey MO (2nd round), 5

In an acute triangle $\vartriangle ABC$ with circumradius $R$, altitudes $\overline{AD},\overline{BE},\overline{CF}$ have lengths ${{h}_{1}},{{h}_{2}},{{h}_{3}}$, respectively. If ${{t}_{1}},{{t}_{2}},{{t}_{3}}$ are lengths of the tangents from $A,B,C$, respectively, to the circumcircle of triangle $\vartriangle DEF$, prove that $\sum\limits_{i=1}^{3}{{{\left( \frac{t{}_{i}}{\sqrt{h{}_{i}}} \right)}^{2}}\le }\frac{3}{2}R$.

2013 Iran Team Selection Test, 12

Let $ABCD$ be a cyclic quadrilateral that inscribed in the circle $\omega$.Let $I_{1},I_{2}$ and $r_{1},r_{2}$ be incenters and radii of incircles of triangles $ACD$ and $ABC$,respectively.assume that $r_{1}=r_{2}$. let $\omega'$ be a circle that touches $AB,AD$ and touches $\omega$ at $T$. tangents from $A,T$ to $\omega$ meet at the point $K$.prove that $I_{1},I_{2},K$ lie on a line.

2009 Today's Calculation Of Integral, 463

Evaluate $ \int_0^{\frac{\pi}{4}} \frac{e^{\frac{1}{\cos ^ 2 x}}\sin x}{\cos ^ 3 x}\ dx$.

1997 Junior Balkan MO, 4

Determine the triangle with sides $a,b,c$ and circumradius $R$ for which $R(b+c) = a\sqrt{bc}$. [i]Romania[/i]

2014 Contests, 2

Consider a convex pentagon circumscribed about a circle. We name the lines that connect vertices of the pentagon with the opposite points of tangency with the circle [i]gergonnians[/i]. (a) Prove that if four gergonnians are conncurrent, the all five of them are concurrent. (b) Prove that if there is a triple of gergonnians that are concurrent, then there is another triple of gergonnians that are concurrent.

1998 IMO Shortlist, 3

Let $I$ be the incenter of triangle $ABC$. Let $K,L$ and $M$ be the points of tangency of the incircle of $ABC$ with $AB,BC$ and $CA$, respectively. The line $t$ passes through $B$ and is parallel to $KL$. The lines $MK$ and $ML$ intersect $t$ at the points $R$ and $S$. Prove that $\angle RIS$ is acute.

2011 NIMO Problems, 6

Circle $\odot O$ with diameter $\overline{AB}$ has chord $\overline{CD}$ drawn such that $\overline{AB}$ is perpendicular to $\overline{CD}$ at $P$. Another circle $\odot A$ is drawn, sharing chord $\overline{CD}$. A point $Q$ on minor arc $\overline{CD}$ of $\odot A$ is chosen so that $\text{m} \angle AQP + \text{m} \angle QPB = 60^\circ$. Line $l$ is tangent to $\odot A$ through $Q$ and a point $X$ on $l$ is chosen such that $PX=BX$. If $PQ = 13$ and $BQ = 35$, find $QX$. [i]Proposed by Aaron Lin[/i]

1986 Traian Lălescu, 1.4

Let be two fixed points $ B,C. $ Find the locus of the spatial points $ A $ such that $ ABC $ is a nondegenerate triangle and the expression $$ R^2 (A)\cdot\sin \left( 2\angle ABC\right)\cdot\sin \left( 2\angle BCA\right) $$ has the greatest value possible, where $ R(A) $ denotes the radius of the excirlce of $ ABC. $

1997 AIME Problems, 15

The sides of rectangle $ABCD$ have lengths 10 and 11. An equilateral triangle is drawn so that no point of the triangle lies outside $ABCD.$ The maximum possible area of such a triangle can be written in the form $p\sqrt{q}-r,$ where $p, q,$ and $r$ are positive integers, and $q$ is not divisible by the square of any prime number. Find $p+q+r.$

2018 India PRMO, 14

If $x = cos 1^o cos 2^o cos 3^o...cos 89^o$ and $y = cos 2^o cos 6^o cos 10^o...cos 86^o$, then what is the integer nearest to $\frac27 \log_2 \frac{y}{x}$ ?

2005 IberoAmerican, 5

Let $O$ be the circumcenter of acutangle triangle $ABC$ and let $A_1$ be some point in the smallest arc $BC$ of the circumcircle of $ABC$. Let $A_2$ and $A_3$ points on sides $AB$ and $AC$, respectively, such that $\angle BA_1A_2 = \angle OAC$ and $\angle CA_1A_3 = \angle OAB$. Prove that the line $A_2A_3$ passes through the orthocenter of $ABC$.

1993 AMC 12/AHSME, 29

Which of the following sets could NOT be the lengths of the external diagonals of a right rectangular prism [a "box"]? (An [i]external diagonal[/i] is a diagonal of one of the rectangular faces of the box.) $ \textbf{(A)}\ \{4, 5, 6\} \qquad\textbf{(B)}\ \{4, 5, 7\} \qquad\textbf{(C)}\ \{4, 6, 7\} \qquad\textbf{(D)}\ \{5, 6, 7\} \qquad\textbf{(E)}\ \{5, 7, 8\} $

2006 Czech and Slovak Olympiad III A, 6

Find all real solutions $(x,y,z)$ of the system of equations: \[ \begin{cases} \tan ^2x+2\cot^22y=1 \\ \tan^2y+2\cot^22z=1 \\ \tan^2z+2\cot^22x=1 \\ \end{cases} \]

DMM Individual Rounds, 2012 Tie

[b]p1.[/b] An $8$-inch by $11$-inch sheet of paper is laid flat so that the top and bottom edges are $8$ inches long. The paper is then folded so that the top left corner touches the right edge. What is the minimum possible length of the fold? [b]p2.[/b] Triangle $ABC$ is equilateral, with $AB = 6$. There are points $D$, $E$ on segment AB (in the order $A$, $D$, $E$, $B$), points $F$, $G$ on segment $BC$ (in the order $B$, $F$, $G$, $C$), and points $H$, $I$ on segment $CA$ (in the order $C$, $H$, $I$, $A$) such that $DE = F G = HI = 2$. Considering all such configurations of $D$, $E$, $F$, $G$, $H$, $I$, let $A_1$ be the maximum possible area of (possibly degenerate) hexagon $DEF GHI$ and let $A_2$ be the minimum possible area. Find $A_1 - A_2$. [b]p3.[/b] Find $$\tan \frac{\pi}{7} \tan \frac{2\pi}{7} \tan \frac{3\pi}{7}$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1997 Pre-Preparation Course Examination, 2

An acute triangle $ ABC$ is given. Points $ A_1$ and $ A_2$ are taken on the side $ BC$ (with $ A_2$ between $ A_1$ and $ C$), $ B_1$ and $ B_2$ on the side $ AC$ (with $ B_2$ between $ B_1$ and $ A$), and $ C_1$ and $ C_2$ on the side $ AB$ (with $ C_2$ between $ C_1$ and $ B$) so that \[ \angle AA_1A_2 \equal{} \angle AA_2A_1 \equal{} \angle BB_1B_2 \equal{} \angle BB_2B_1 \equal{} \angle CC_1C_2 \equal{} \angle CC_2C_1.\] The lines $ AA_1,BB_1,$ and $ CC_1$ bound a triangle, and the lines $ AA_2,BB_2,$ and $ CC_2$ bound a second triangle. Prove that all six vertices of these two triangles lie on a single circle.

2013 Online Math Open Problems, 50

Let $S$ denote the set of words $W = w_1w_2\ldots w_n$ of any length $n\ge0$ (including the empty string $\lambda$), with each letter $w_i$ from the set $\{x,y,z\}$. Call two words $U,V$ [i]similar[/i] if we can insert a string $s\in\{xyz,yzx,zxy\}$ of three consecutive letters somewhere in $U$ (possibly at one of the ends) to obtain $V$ or somewhere in $V$ (again, possibly at one of the ends) to obtain $U$, and say a word $W$ is [i]trivial[/i] if for some nonnegative integer $m$, there exists a sequence $W_0,W_1,\ldots,W_m$ such that $W_0=\lambda$ is the empty string, $W_m=W$, and $W_i,W_{i+1}$ are similar for $i=0,1,\ldots,m-1$. Given that for two relatively prime positive integers $p,q$ we have \[\frac{p}{q} = \sum_{n\ge0} f(n)\left(\frac{225}{8192}\right)^n,\]where $f(n)$ denotes the number of trivial words in $S$ of length $3n$ (in particular, $f(0)=1$), find $p+q$. [i]Victor Wang[/i]

1997 Polish MO Finals, 3

In a tetrahedron $ABCD$, the medians of the faces $ABD$, $ACD$, $BCD$ from $D$ make equal angles with the corresponding edges $AB$, $AC$, $BC$. Prove that each of these faces has area less than or equal to the sum of the areas of the other two faces. [hide="Comment"][i]Equivalent version of the problem:[/i] $ABCD$ is a tetrahedron. $DE$, $DF$, $DG$ are medians of triangles $DBC$, $DCA$, $DAB$. The angles between $DE$ and $BC$, between $DF$ and $CA$, and between $DG$ and $AB$ are equal. Show that: area $DBC$ $\leq$ area $DCA$ + area $DAB$. [/hide]

1949 Putnam, A6

Tags: trigonometry
Prove that for every real or complex $x$ $$\prod_{k=1}^{\infty} \frac{1+2\cos \frac{2x}{3^{k}}}{3} =\frac{\sin x}{x}.$$

2005 Today's Calculation Of Integral, 75

A function $f(\theta)$ satisfies the following conditions $(a),(b)$. $(a)\ f(\theta)\geq 0$ $(b)\ \int_0^{\pi} f(\theta)\sin \theta d\theta =1$ Prove the following inequality. \[\int_0^{\pi} f(\theta)\sin n\theta \ d\theta \leq n\ (n=1,2,\cdots)\]