This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2019 LIMIT Category A, Problem 11

$\angle A,\angle B,\angle C$ are angles of a triangle such that $\sin^2A+\sin^2B=\sin^2C$, then $\angle C$ in degrees is equal to $\textbf{(A)}~30$ $\textbf{(B)}~90$ $\textbf{(C)}~45$ $\textbf{(D)}~\text{none of the above}$

2012 Online Math Open Problems, 47

Let $ABCD$ be an isosceles trapezoid with bases $AB=5$ and $CD=7$ and legs $BC=AD=2 \sqrt{10}.$ A circle $\omega$ with center $O$ passes through $A,B,C,$ and $D.$ Let $M$ be the midpoint of segment $CD,$ and ray $AM$ meet $\omega$ again at $E.$ Let $N$ be the midpoint of $BE$ and $P$ be the intersection of $BE$ with $CD.$ Let $Q$ be the intersection of ray $ON$ with ray $DC.$ There is a point $R$ on the circumcircle of $PNQ$ such that $\angle PRC = 45^\circ.$ The length of $DR$ can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$? [i]Author: Ray Li[/i]

2014 IPhOO, 11

A spinning turntable is rotating in a vertical plane with period $ 500 \, \text{ms} $. It has diameter 2 feet carries a ping-pong ball at the edge of its circumference. The ball is bolted on to the turntable but is released from its clutch at a moment in time when the ball makes a subtended angle of $\theta>0$ with the respect to the horizontal axis that crosses the center. This is illustrated in the figure. The ball flies up in the air, making a parabola and, when it comes back down, it does not hit the turntable. This can happen only if $\theta>\theta_m$. Find $\theta_m$, rounded to the nearest integer degree? [asy] filldraw(circle((0,0),1),gray(0.7)); draw((0,0)--(0.81915, 0.57358)); dot((0.81915, 0.57358)); draw((0.81915, 0.57358)--(0.475006, 1.06507)); arrow((0.417649,1.14698), dir(305), 12); draw((0,0)--(1,0),dashed); label("$\theta$", (0.2, 0.2/3), fontsize(8)); label("$r$", (0.409575,0.28679), NW, fontsize(8)); [/asy] [i]Problem proposed by Ahaan Rungta[/i]

1989 AMC 12/AHSME, 14

Tags: trigonometry
$\cot 10 + \tan 5 =$ $\textbf{(A)}\ \csc 5 \qquad \textbf{(B)}\ \csc 10 \qquad \textbf{(C)}\ \sec 5 \qquad \textbf{(D)}\ \sec 10 \qquad \textbf{(E)}\ \sin 15$

2009 Harvard-MIT Mathematics Tournament, 9

Let $ABC$ be a triangle with $AB=16$ and $AC=5$. Suppose that the bisectors of angle $\angle ABC$ and $\angle BCA$ meet at a point $P$ in the triangle's interior. Given that $AP=4$, compute $BC$.

2013 Today's Calculation Of Integral, 879

Evaluate the integrals as follows. (1) $\int \frac{x^2}{2-x}\ dx$ (2) $\int \sqrt[3]{x^5+x^3}\ dx$ (3) $\int_0^1 (1-x)\cos \pi x\ dx$

2021 AMC 12/AHSME Spring, 24

Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$. Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$. If $QR=3\sqrt3$ and $\angle QPR=60^\circ$, then the area of $\triangle PQR$ is $\frac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$? $\textbf{(A) }110 \qquad \textbf{(B) }114 \qquad \textbf{(C) }118 \qquad \textbf{(D) }122\qquad \textbf{(E) }126$

2009 Today's Calculation Of Integral, 478

Evaluate $ \int_0^{\frac{\pi}{4}} \{(x\sqrt{\sin x}\plus{}2\sqrt{\cos x})\sqrt{\tan x}\plus{}(x\sqrt{\cos x}\minus{}2\sqrt{\sin x})\sqrt{\cot x}\}\ dx.$

2008 Macedonia National Olympiad, 3

An acute triangle $ ABC$ with $ AB \neq AC$ is given. Let $ V$ and $ D$ be the feet of the altitude and angle bisector from $ A$, and let $ E$ and $ F$ be the intersection points of the circumcircle of $ \triangle AVD$ with sides $ AC$ and $ AB$, respectively. Prove that $ AD$, $ BE$ and $ CF$ have a common point.

1996 ITAMO, 1

Among all the triangles which have a fixed side $l$ and a fixed area $S$, determine for which triangles the product of the altitudes is maximum.

2012 USA Team Selection Test, 1

In acute triangle $ABC$, $\angle{A}<\angle{B}$ and $\angle{A}<\angle{C}$. Let $P$ be a variable point on side $BC$. Points $D$ and $E$ lie on sides $AB$ and $AC$, respectively, such that $BP=PD$ and $CP=PE$. Prove that as $P$ moves along side $BC$, the circumcircle of triangle $ADE$ passes through a fixed point other than $A$.

2008 Moldova MO 11-12, 2

Find the exact value of $ E\equal{}\displaystyle\int_0^{\frac\pi2}\cos^{1003}x\text{d}x\cdot\int_0^{\frac\pi2}\cos^{1004}x\text{d}x\cdot$.

1989 IMO Longlists, 41

Let $ f(x) \equal{} a \sin^2x \plus{} b \sin x \plus{} c,$ where $ a, b,$ and $ c$ are real numbers. Find all values of $ a, b$ and $ c$ such that the following three conditions are satisfied simultaneously: [b](i)[/b] $ f(x) \equal{} 381$ if $ \sin x \equal{} \frac{1}{2}.$ [b](ii)[/b] The absolute maximum of $ f(x)$ is $ 444.$ [b](iii)[/b] The absolute minimum of $ f(x)$ is $ 364.$

2013 NIMO Problems, 6

Let $ABC$ be a triangle with $AB = 42$, $AC = 39$, $BC = 45$. Let $E$, $F$ be on the sides $\overline{AC}$ and $\overline{AB}$ such that $AF = 21, AE = 13$. Let $\overline{CF}$ and $\overline{BE}$ intersect at $P$, and let ray $AP$ meet $\overline{BC}$ at $D$. Let $O$ denote the circumcenter of $\triangle DEF$, and $R$ its circumradius. Compute $CO^2-R^2$. [i]Proposed by Yang Liu[/i]

1999 National Olympiad First Round, 21

$ ABC$ is a triangle with $ \angle BAC \equal{} 10{}^\circ$, $ \angle ABC \equal{} 150{}^\circ$. Let $ X$ be a point on $ \left[AC\right]$ such that $ \left|AX\right| \equal{} \left|BC\right|$. Find $ \angle BXC$. $\textbf{(A)}\ 15^\circ \qquad\textbf{(B)}\ 20^\circ \qquad\textbf{(C)}\ 25^\circ \qquad\textbf{(D)}\ 30^\circ \qquad\textbf{(E)}\ 35^\circ$

2010 ISI B.Math Entrance Exam, 10

Consider a regular heptagon ( polygon of $7$ equal sides and angles) $ABCDEFG$ as in the figure below:- $(a).$ Prove $\frac{1}{\sin\frac{\pi}{7}}=\frac{1}{\sin\frac{2\pi}{7}}+\frac{1}{\sin\frac{3\pi}{7}}$ $(b).$ Using $(a)$ or otherwise, show that $\frac{1}{AG}=\frac{1}{AF}+\frac{1}{AE}$ [asy] draw(dir(360/7)..dir(2*360/7),blue); draw(dir(2*360/7)..dir(3*360/7),blue); draw(dir(3*360/7)..dir(4*360/7),blue); draw(dir(4*360/7)..dir(5*360/7),blue); draw(dir(5*360/7)..dir(6*360/7),blue); draw(dir(6*360/7)..dir(7*360/7),blue); draw(dir(7*360/7)..dir(360/7),blue); draw(dir(2*360/7)..dir(4*360/7),blue); draw(dir(4*360/7)..dir(1*360/7),blue); label("$A$",dir(4*360/7),W); label("$B$",dir(5*360/7),S); label("$C$",dir(6*360/7),S); label("$D$",dir(7*360/7),E); label("$E$",dir(1*360/7),E); label("$F$",dir(2*360/7),N); label("$G$",dir(3*360/7),W); [/asy]

2014 All-Russian Olympiad, 4

Given a triangle $ABC$ with $AB>BC$, $ \Omega $ is circumcircle. Let $M$, $N$ are lie on the sides $AB$, $BC$ respectively, such that $AM=CN$. $K(.)=MN\cap AC$ and $P$ is incenter of the triangle $AMK$, $Q$ is K-excenter of the triangle $CNK$ (opposite to $K$ and tangents to $CN$). If $R$ is midpoint of the arc $ABC$ of $ \Omega $ then prove that $RP=RQ$. M. Kungodjin

1995 Poland - First Round, 1

Tags: trigonometry
Determine all positive integers $n$, such that the equation $2 \sin nx = \tan x + \cot x$ has solutions in real numbers $x$.

1976 IMO Longlists, 49

Determine whether there exist $1976$ nonsimilar triangles with angles $\alpha, \beta, \gamma,$ each of them satisfying the relations \[\frac{\sin \alpha + \sin\beta + \sin\gamma}{\cos \alpha + \cos \beta + \cos \gamma}=\frac{12}{7}\text{ and }\sin \alpha \sin \beta \sin \gamma =\frac{12}{25}\]

1988 IMO Longlists, 70

$ABC$ is a triangle, with inradius $r$ and circumradius $R.$ Show that: \[ \sin \left( \frac{A}{2} \right) \cdot \sin \left( \frac{B}{2} \right) + \sin \left( \frac{B}{2} \right) \cdot \sin \left( \frac{C}{2} \right) + \sin \left( \frac{C}{2} \right) \cdot \sin \left( \frac{A}{2} \right) \leq \frac{5}{8} + \frac{r}{4 \cdot R}. \]

2014 Cezar Ivănescu, 2

While there do not exist pairwise distinct real numbers $a,b,c$ satisfying $a^2+b^2+c^2 = ab+bc+ca$, there do exist complex numbers with that property. Let $a,b,c$ be complex numbers such that $a^2+b^2+c^2 = ab+bc+ca$ and $|a+b+c| = 21$. Given that $|a-b| = 2\sqrt{3}$, $|a| = 3\sqrt{3}$, compute $|b|^2+|c|^2$. [hide="Clarifications"] [list] [*] The problem should read $|a+b+c| = 21$. An earlier version of the test read $|a+b+c| = 7$; that value is incorrect. [*] $|b|^2+|c|^2$ should be a positive integer, not a fraction; an earlier version of the test read ``... for relatively prime positive integers $m$ and $n$. Find $m+n$.''[/list][/hide] [i]Ray Li[/i]

1969 IMO Longlists, 37

$(HUN 4)$IMO2 If $a_1, a_2, . . . , a_n$ are real constants, and if $y = \cos(a_1 + x) +2\cos(a_2+x)+ \cdots+ n \cos(a_n + x)$ has two zeros $x_1$ and $x_2$ whose difference is not a multiple of $\pi$, prove that $y = 0.$

1998 Croatia National Olympiad, Problem 1

Let $a,b,c$ be the sides and $\alpha,\beta,\gamma$ be the corresponding angles of a triangle. Prove the equality $$\left(\frac bc+\frac cb\right)\cos\alpha+\left(\frac ca+\frac ac\right)\cos\beta+\left(\frac ab+\frac ba\right)\cos\gamma=3.$$

2004 AMC 10, 22

A triangle with sides of $ 5$, $ 12$, and $ 13$ has both an inscibed and a circumscribed circle. What is the distance between the centers of those circles? $ \textbf{(A)}\ \frac{3\sqrt{5}}{2}\qquad \textbf{(B)}\ \frac{7}{2}\qquad \textbf{(C)}\ \sqrt{15}\qquad \textbf{(D)}\ \frac{\sqrt{65}}{2}\qquad \textbf{(E)}\ \frac{9}{2}$

2024 AMC 12/AHSME, 8

How many angles $\theta$ with $0\le\theta\le2\pi$ satisfy $\log(\sin(3\theta))+\log(\cos(2\theta))=0$? $ \textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4 \qquad $