This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

1996 Israel National Olympiad, 3

The angles of an acute triangle $ABC$ at $\alpha , \beta, \gamma$. Let $AD$ be a height, $CF$ a median, and $BE$ the bisector of $\angle B$. Show that $AD,CF$ and $BE$ are concurrent if and only if $\cos \gamma \tan\beta = \sin \alpha$ .

1992 IMTS, 5

In $\triangle ABC$, shown on the right, let $r$ denote the radius of the inscribed circle, and let $r_A$, $r_B$, and $r_C$ denote the radii of the smaller circles tangent to the inscribed circle and to the sides emanating from $A$, $B$, and $C$, respectively. Prove that $r \leq r_A + r_B + r_C$

2007 Germany Team Selection Test, 3

Let $ ABC$ be a triangle and $ P$ an arbitrary point in the plane. Let $ \alpha, \beta, \gamma$ be interior angles of the triangle and its area is denoted by $ F.$ Prove: \[ \ov{AP}^2 \cdot \sin 2\alpha + \ov{BP}^2 \cdot \sin 2\beta + \ov{CP}^2 \cdot \sin 2\gamma \geq 2F \] When does equality occur?

1996 Canadian Open Math Challenge, 7

Triangle $ABC$ is right angled at $A$. The circle with center $A$ and radius $AB$ cuts $BC$ and $AC$ internally at $D$ and $E$ respectively. If $BD = 20$ and $DC = 16$, determine $AC^2$.

1972 IMO Shortlist, 11

Consider a sequence of circles $K_1,K_2,K_3,K_4, \ldots$ of radii $r_1, r_2, r_3, r_4, \ldots$ , respectively, situated inside a triangle $ABC$. The circle $K_1$ is tangent to $AB$ and $AC$; $K_2$ is tangent to $K_1$, $BA$, and $BC$; $K_3$ is tangent to $K_2$, $CA$, and $CB$; $K_4$ is tangent to $K_3$, $AB$, and $AC$; etc. (a) Prove the relation \[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \] where $r$ is the radius of the incircle of the triangle $ABC$. Deduce the existence of a $t_1$ such that \[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\] (b) Prove that the sequence of circles $K_1,K_2, \ldots $ is periodic.

2014 NIMO Problems, 2

Tags: trigonometry
Let $0^{\circ}\leq\alpha,\beta,\gamma\leq90^{\circ}$ be angles such that \[\sin\alpha-\cos\beta=\tan\gamma\] \[\sin\beta-\cos\alpha=\cot\gamma\] Compute the sum of all possible values of $\gamma$ in degrees. [i]Proposed by Michael Ren[/i]

1986 IMO Shortlist, 20

Prove that the sum of the face angles at each vertex of a tetrahedron is a straight angle if and only if the faces are congruent triangles.

1995 AMC 12/AHSME, 18

Two rays with common endpoint $O$ forms a $30^\circ$ angle. Point $A$ lies on one ray, point $B$ on the other ray, and $AB = 1$. The maximum possible length of $OB$ is $\textbf{(A)}\ 1 \qquad \textbf{(B)}\ \dfrac{1+\sqrt{3}}{\sqrt{2}} \qquad \textbf{(C)}\ \sqrt{3} \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ \dfrac{4}{\sqrt{3}}$

2014 Germany Team Selection Test, 3

In a triangle $ABC$, let $D$ and $E$ be the feet of the angle bisectors of angles $A$ and $B$, respectively. A rhombus is inscribed into the quadrilateral $AEDB$ (all vertices of the rhombus lie on different sides of $AEDB$). Let $\varphi$ be the non-obtuse angle of the rhombus. Prove that $\varphi \le \max \{ \angle BAC, \angle ABC \}$.

1969 IMO Shortlist, 16

$(CZS 5)$ A convex quadrilateral $ABCD$ with sides $AB = a, BC = b, CD = c, DA = d$ and angles $\alpha = \angle DAB, \beta = \angle ABC, \gamma = \angle BCD,$ and $\delta = \angle CDA$ is given. Let $s = \frac{a + b + c +d}{2}$ and $P$ be the area of the quadrilateral. Prove that $P^2 = (s - a)(s - b)(s - c)(s - d) - abcd \cos^2\frac{\alpha +\gamma}{2}$

2005 Georgia Team Selection Test, 2

In triangle $ ABC$ we have $ \angle{ACB} \equal{} 2\angle{ABC}$ and there exists the point $ D$ inside the triangle such that $ AD \equal{} AC$ and $ DB \equal{} DC$. Prove that $ \angle{BAC} \equal{} 3\angle{BAD}$.

2008 Iran MO (3rd Round), 1

Prove that for $ n > 0$ and $ a\neq0$ the polynomial $ p(z) \equal{} az^{2n \plus{} 1} \plus{} bz^{2n} \plus{} \bar bz \plus{} \bar a$ has a root on unit circle

2001 All-Russian Olympiad, 3

Let the circle $ {\omega}_{1}$ be internally tangent to another circle $ {\omega}_{2}$ at $ N$.Take a point $ K$ on $ {\omega}_{1}$ and draw a tangent $ AB$ which intersects $ {\omega}_{2}$ at $ A$ and $ B$. Let $M$ be the midpoint of the arc $ AB$ which is on the opposite side of $ N$. Prove that, the circumradius of the $ \triangle KBM$ doesnt depend on the choice of $ K$.

2008 Harvard-MIT Mathematics Tournament, 6

A [i]root of unity[/i] is a complex number that is a solution to $ z^n \equal{} 1$ for some positive integer $ n$. Determine the number of roots of unity that are also roots of $ z^2 \plus{} az \plus{} b \equal{} 0$ for some integers $ a$ and $ b$.

2012 Today's Calculation Of Integral, 825

Answer the following questions. (1) For $x\geq 0$, show that $x-\frac{x^3}{6}\leq \sin x\leq x.$ (2) For $x\geq 0$, show that $\frac{x^3}{3}-\frac{x^5}{30}\leq \int_0^x t\sin t\ dt\leq \frac{x^3}{3}.$ (3) Find the limit \[\lim_{x\rightarrow 0} \frac{\sin x-x\cos x}{x^3}.\]

2008 Bulgaria Team Selection Test, 2

The point $P$ lies inside, or on the boundary of, the triangle $ABC$. Denote by $d_{a}$, $d_{b}$ and $d_{c}$ the distances between $P$ and $BC$, $CA$, and $AB$, respectively. Prove that $\max\{AP,BP,CP \} \ge \sqrt{d_{a}^{2}+d_{b}^{2}+d_{c}^{2}}$. When does the equality holds?

2000 Harvard-MIT Mathematics Tournament, 14

$ABCD$ is a cyclic quadrilateral inscribed in a circle of radius $5$, with $AB=6$, $BC=7$, $CD=8$. Find $AD$.

IV Soros Olympiad 1997 - 98 (Russia), 10.12

Two straight lines are given on a plane, intersecting at point $O$ at an angle $a$. Let $A$, $B$ and $C $ be three points on one of the lines, located on one side of$ O$ and following in the indicated order, $M$ be an arbitrary point on another line, different from $O$, Let $\angle AMB=\gamma$, $\angle BMC = \phi$. Consider the function $F(M) = ctg \gamma + ctg \phi$ . Prove that$ F(M)$ takes the smallest value on each of the rays into which $O$ divides the second straight line. (Each has its own.) Let us denote one of these smallest values by $q$, and the other by $p$. Prove that the exprseeion $\frac{p}{q}$ is independent of choice of points $A$, $B$ and $C$. Express this relationship in terms of $a$.

2009 Today's Calculation Of Integral, 438

Evaluate $ \int_{\sqrt{2}\minus{}1}^{\sqrt{2}\plus{}1} \frac{x^4\plus{}x^2\plus{}2}{(x^2\plus{}1)^2}\ dx.$

2014 Brazil National Olympiad, 1

Let $ABCD$ be a convex quadrilateral. Diagonals $AC$ and $BD$ meet at point $P$. The inradii of triangles $ABP$, $BCP$, $CDP$ and $DAP$ are equal. Prove that $ABCD$ is a rhombus.

1992 Bundeswettbewerb Mathematik, 3

Provided a convex equilateral pentagon. On every side of the pentagon We construct equilateral triangles which run through the interior of the pentagon. Prove that at least one of the triangles does not protrude the pentagon's boundary.

2006 Kyiv Mathematical Festival, 4

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Let $O$ be the circumcenter and $H$ be the intersection point of the altitudes of acute triangle $ABC.$ The straight lines $BH$ and $CH$ intersect the segments $CO$ and $BO$ at points $D$ and $E$ respectively. Prove that if triangles $ODH$ and $OEH$ are isosceles then triangle $ABC$ is isosceles too.

2011 China Western Mathematical Olympiad, 2

Let $a,b,c > 0$, prove that \[\frac{(a-b)^2}{(c+a)(c+b)} + \frac{(b-c)^2}{(a+b)(a+c)} + \frac{(c-a)^2}{(b+c)(b+a)} \geq \frac{(a-b)^2}{a^2+b^2+c^2}\]

2002 Hungary-Israel Binational, 2

Let $A', B' , C'$ be the projections of a point $M$ inside a triangle $ABC$ onto the sides $BC, CA, AB$, respectively. Define $p(M ) = \frac{MA'\cdot MB'\cdot MC'}{MA \cdot MB \cdot MC}$ . Find the position of point $M$ that maximizes $p(M )$.

2004 Tournament Of Towns, 2

The incircle of the triangle ABC touches the sides BC, AC, and AB at points A', B', and C', respectively. It is known that AA'=BB'=CC'. Does the triangle ABC have to be equilateral? (I am very interested in ingenious solution of this problem, because I found an ugly one using Stewart's theorem and tons of algebra during the contest).