Found problems: 3349
2004 Austrian-Polish Competition, 3
Solve the following system of equations in $\mathbb{R}$ where all square roots are non-negative:
$
\begin{matrix}
a - \sqrt{1-b^2} + \sqrt{1-c^2} = d \\
b - \sqrt{1-c^2} + \sqrt{1-d^2} = a \\
c - \sqrt{1-d^2} + \sqrt{1-a^2} = b \\
d - \sqrt{1-a^2} + \sqrt{1-b^2} = c \\
\end{matrix}
$
1972 Bulgaria National Olympiad, Problem 3
Prove the equality:
$$\sum_{k=1}^{n-1}\frac1{\sin^2\frac{(2k+1)\pi}{2n}}=n^2$$
where $n$ is a natural number.
[i]H. Lesov[/i]
2006 Princeton University Math Competition, 8
Given that triangle $ABC$ has side lengths $a=7$, $b=8$ , $c=5$, find $$(\sin (A)+\sin (B)+\sin (C)) \cdot \left(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}\right).$$
.
2010 Today's Calculation Of Integral, 536
Evaluate $ \int_0^\frac{\pi}{4} \frac{x\plus{}\sin x}{1\plus{}\cos x}\ dx$.
1999 Junior Balkan MO, 4
Let $ABC$ be a triangle with $AB=AC$. Also, let $D\in[BC]$ be a point such that $BC>BD>DC>0$, and let $\mathcal{C}_1,\mathcal{C}_2$ be the circumcircles of the triangles $ABD$ and $ADC$ respectively. Let $BB'$ and $CC'$ be diameters in the two circles, and let $M$ be the midpoint of $B'C'$. Prove that the area of the triangle $MBC$ is constant (i.e. it does not depend on the choice of the point $D$).
[i]Greece[/i]
2007 Today's Calculation Of Integral, 251
Evaluate $ \int_0^{n\pi} e^x\sin ^ 4 x\ dx\ (n\equal{}1,\ 2,\ \cdots).$
2013 AMC 12/AHSME, 24
Let $ABC$ be a triangle where $M$ is the midpoint of $\overline{AC}$, and $\overline{CN}$ is the angle bisector of $\angle ACB$ with $N$ on $\overline{AB}$. Let $X$ be the intersection of the median $\overline{BM}$ and the bisector $\overline{CN}$. In addition $\bigtriangleup BXN$ is equilateral and $AC=2$. What is $BN^2$?
$\textbf{(A)}\ \frac{10-6\sqrt{2}}{7} \qquad\textbf{(B)}\ \frac{2}{9} \qquad\textbf{(C)}\ \frac{5\sqrt{2} - 3\sqrt{3}}{8} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{6} \qquad\textbf{(E)}\ \frac{3\sqrt{3} - 4}{5}$.
1990 AIME Problems, 12
A regular 12-gon is inscribed in a circle of radius 12. The sum of the lengths of all sides and diagonals of the 12-gon can be written in the form
\[ a + b \sqrt{2} + c \sqrt{3} + d \sqrt{6}, \]
where $a$, $b$, $c$, and $d$ are positive integers. Find $a + b + c + d$.
2011 Turkey MO (2nd round), 2
Let $ABC$ be a triangle $D\in[BC]$ (different than $A$ and $B$).$E$ is the midpoint of $[CD]$. $F\in[AC]$ such that $\widehat{FEC}=90$ and $|AF|.|BC|=|AC|.|EC|.$ Circumcircle of $ADC$ intersect $[AB]$ at $G$ different than $A$.Prove that tangent to circumcircle of $AGF$ at $F$ is touch circumcircle of $BGE$ too.
Ukrainian TYM Qualifying - geometry, XII.15
Given a triangular pyramid $SABC$, in which $\angle BSC = \alpha$, $\angle CSA =\beta$, $\angle ASB = \gamma$, and the dihedral angles at the edges $SA$ and $SB$ have the value of $\phi$ and $\delta$, respectively. Prove that $\gamma > \alpha \cdot \cos \delta +\beta \cdot \cos \phi.$$
1953 Polish MO Finals, 6
What algebraic relationship holds between $ \alpha $, $ \beta $ and $ \gamma $ when the equality is satisfied
$$ \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma?$$
2020 AMC 12/AHSME, 9
How many solutions does the equation $\tan{(2x)} = \cos{(\tfrac{x}{2})}$ have on the interval $[0, 2\pi]?$
$\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 3 \qquad \textbf{(D) } 4 \qquad \textbf{(E) } 5$
1988 IberoAmerican, 1
The measure of the angles of a triangle are in arithmetic progression and the lengths of its altitudes are as well. Show that such a triangle is equilateral.
2008 AMC 12/AHSME, 22
A round table has radius $ 4$. Six rectangular place mats are placed on the table. Each place mat has width $ 1$ and length $ x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $ x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $ x$?
[asy]unitsize(4mm);
defaultpen(linewidth(.8)+fontsize(8));
draw(Circle((0,0),4));
path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle;
draw(mat);
draw(rotate(60)*mat);
draw(rotate(120)*mat);
draw(rotate(180)*mat);
draw(rotate(240)*mat);
draw(rotate(300)*mat);
label("$x$",(-2.687,0),E);
label("$1$",(-3.187,1.5513),S);[/asy]$ \textbf{(A)}\ 2\sqrt {5} \minus{} \sqrt {3} \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ \frac {3\sqrt {7} \minus{} \sqrt {3}}{2} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {5 \plus{} 2\sqrt {3}}{2}$
2007 International Zhautykov Olympiad, 3
Let $ABCDEF$ be a convex hexagon and it`s diagonals have one common point $M$. It is known that the circumcenters of triangles $MAB,MBC,MCD,MDE,MEF,MFA$ lie on a circle.
Show that the quadrilaterals $ABDE,BCEF,CDFA$ have equal areas.
2005 Today's Calculation Of Integral, 8
Calculate the following indefinite integrals.
[1] $\int x(x^2+3)^2 dx$
[2] $\int \ln (x+2) dx$
[3] $\int x\cos x dx$
[4] $\int \frac{dx}{(x+2)^2}dx$
[5] $\int \frac{x-1}{x^2-2x+3}dx$
2002 Moldova National Olympiad, 4
Let $ x\in \mathbb R$. Find the minimum and maximum values of the expresion:
$ E\equal{}\dfrac{(1\plus{}x)^8\plus{}16x^4}{(1\plus{}x^2)^4}$
2014 National Olympiad First Round, 17
Let $E$ be the midpoint of side $[AB]$ of square $ABCD$. Let the circle through $B$ with center $A$ and segment $[EC]$ meet at $F$. What is $|EF|/|FC|$?
$
\textbf{(A)}\ 2
\qquad\textbf{(B)}\ \dfrac{3}{2}
\qquad\textbf{(C)}\ \sqrt{5}-1
\qquad\textbf{(D)}\ 3
\qquad\textbf{(E)}\ \sqrt{3}
$
2021 Sharygin Geometry Olympiad, 19
A point $P$ lies inside a convex quadrilateral $ABCD$. Common internal tangents to the incircles of triangles $PAB$ and $PCD$ meet at point $Q$, and common internal tangents to the incircles of $PBC,PAD$ meet at point $R$. Prove that $P,Q,R$ are collinear.
2014 USAMO, 5
Let $ABC$ be a triangle with orthocenter $H$ and let $P$ be the second intersection of the circumcircle of triangle $AHC$ with the internal bisector of the angle $\angle BAC$. Let $X$ be the circumcenter of triangle $APB$ and $Y$ the orthocenter of triangle $APC$. Prove that the length of segment $XY$ is equal to the circumradius of triangle $ABC$.
1971 Kurschak Competition, 1
A straight line cuts the side $AB$ of the triangle $ABC$ at $C_1$, the side $AC$ at $B_1$ and the line $BC$ at $A_1$. $C_2$ is the reflection of $C_1$ in the midpoint of $AB$, and $B_2$ is the reflection of $B_1$ in the midpoint of $AC$. The lines $B_2C_2$ and $BC$ intersect at $A_2$. Prove that $$\frac{sen \, \, B_1A_1C}{sen\, \, C_2A_2B} = \frac{B_2C_2}{B_1C_1}$$
[img]https://cdn.artofproblemsolving.com/attachments/3/8/774da81495df0a0f7f2f660ae9f516cf70df06.png[/img]
1989 China Team Selection Test, 2
$AD$ is the altitude on side $BC$ of triangle $ABC$. If $BC+AD-AB-AC = 0$, find the range of $\angle BAC$.
[i]Alternative formulation.[/i] Let $AD$ be the altitude of triangle $ABC$ to the side $BC$. If $BC+AD=AB+AC$, then find the range of $\angle{A}$.
1995 India Regional Mathematical Olympiad, 7
Show that for any real number $x$:
\[ x^2 \sin{x} + x \cos{x} + x^2 + \frac{1}{2} > 0 . \]
2009 Moldova National Olympiad, 12.3
Find all pairs $(a,b)$ of real numbers, so that $\sin(2009x)+\sin(ax)+\sin(bx)=0$ holds for any $x\in \mathbf {R}$.
2013 ELMO Shortlist, 7
Let $ABC$ be a triangle inscribed in circle $\omega$, and let the medians from $B$ and $C$ intersect $\omega$ at $D$ and $E$ respectively. Let $O_1$ be the center of the circle through $D$ tangent to $AC$ at $C$, and let $O_2$ be the center of the circle through $E$ tangent to $AB$ at $B$. Prove that $O_1$, $O_2$, and the nine-point center of $ABC$ are collinear.
[i]Proposed by Michael Kural[/i]