This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2014 Iran Team Selection Test, 6

The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $BC$ at $D$. let $X$ is a point on arc $BC$ from circumcircle of triangle $ABC$ such that if $E,F$ are feet of perpendicular from $X$ on $BI,CI$ and $M$ is midpoint of $EF$ we have $MB=MC$. prove that $\widehat{BAD}=\widehat{CAX}$

2006 Taiwan TST Round 1, 1

Let the three sides of $\triangle ABC$ be $a,b,c$. Prove that $\displaystyle \frac{\sin^2A}{a}+\frac{\sin^2B}{b}+\frac{\sin^2C}{c} \le \frac{S^2}{abc}$ where $\displaystyle S=\frac{a+b+c}{2}$. Find the case where equality holds.

2003 Bulgaria Team Selection Test, 5

Let $ABCD$ be a circumscribed quadrilateral and let $P$ be the orthogonal projection of its in center on $AC$. Prove that $\angle {APB}=\angle {APD}$

2011 Purple Comet Problems, 23

Tags: trigonometry
Let $x$ be a real number in the interval $\left(0,\dfrac{\pi}{2}\right)$ such that $\dfrac{1}{\sin x \cos x}+2\cot 2x=\dfrac{1}{2}$. Evaluate $\dfrac{1}{\sin x \cos x}-2\cot 2x$.

2007 ITest, 17

Tags: trigonometry
If $x$ and $y$ are acute angles such that $x+y=\pi/4$ and $\tan y=1/6$, find the value of $\tan x$. $\textbf{(A) }\dfrac{27\sqrt2-18}{71}\hspace{11.5em}\textbf{(B) }\dfrac{35\sqrt2-6}{71}\hspace{11.2em}\textbf{(C) }\dfrac{35\sqrt3+12}{33}$ $\textbf{(D) }\dfrac{37\sqrt3+24}{33}\hspace{11.5em}\textbf{(E) }1\hspace{15em}\textbf{(F) }\dfrac57$ $\textbf{(G) }\dfrac37\hspace{15.4em}\textbf{(H) }6\hspace{15em}\textbf{(I) }\dfrac16$ $\textbf{(J) }\dfrac12\hspace{15.7em}\textbf{(K) }\dfrac67\hspace{14.8em}\textbf{(L) }\dfrac47$ $\textbf{(M) }\sqrt3\hspace{14.5em}\textbf{(N) }\dfrac{\sqrt3}3\hspace{14em}\textbf{(O) }\dfrac56$ $\textbf{(P) }\dfrac23\hspace{15.4em}\textbf{(Q) }\dfrac1{2007}$

2007 Today's Calculation Of Integral, 183

Let $n\geq 2$ be integer. On a plane there are $n+2$ points $O,\ P_{0},\ P_{1},\ \cdots P_{n}$ which satisfy the following conditions as follows. [1] $\angle{P_{k-1}OP_{k}}=\frac{\pi}{n}\ (1\leq k\leq n),\ \angle{OP_{k-1}P_{k}}=\angle{OP_{0}P_{1}}\ (2\leq k\leq n).$ [2] $\overline{OP_{0}}=1,\ \overline{OP_{1}}=1+\frac{1}{n}.$ Find $\lim_{n\to\infty}\sum_{k=1}^{n}\overline{P_{k-1}P_{k}}.$

2005 Today's Calculation Of Integral, 23

Evaluate \[\lim_{a\rightarrow \frac{\pi}{2}-0}\ \int_0^a\ (\cos x)\ln (\cos x)\ dx\ \left(0\leqq a <\frac{\pi}{2}\right)\]

2009 Germany Team Selection Test, 2

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

2000 AIME Problems, 12

The points $A, B$ and $C$ lie on the surface of a sphere with center $O$ and radius 20. It is given that $AB=13, BC=14, CA=15,$ and that the distance from $O$ to triangle $ABC$ is $\frac{m\sqrt{n}}k,$ where $m, n,$ and $k$ are positive integers, $m$ and $k$ are relatively prime, and $n$ is not divisible by the square of any prime. Find $m+n+k.$

2013 Bosnia And Herzegovina - Regional Olympiad, 1

Let $a$ and $b$ be real numbers from interval $\left[0,\frac{\pi}{2}\right]$. Prove that $$\sin^6 {a}+3\sin^2 {a}\cos^2 {b}+\cos^6 {b}=1$$ if and only if $a=b$

2012 AMC 12/AHSME, 25

Let $S=\{(x,y) : x \in \{0,1,2,3,4\}, y \in \{0,1,2,3,4,5\}$, and $(x,y) \neq (0,0) \}$. Let $T$ be the set of all right triangles whose vertices are in $S$. For every right triangle $t=\triangle ABC$ with vertices $A$, $B$, and $C$ in counter-clockwise order and right angle at $A$, let $f(t)= \tan (\angle CBA)$. What is \[ \displaystyle \prod_{t \in T} f(t) \text{?} \] [asy] size((120)); dot((1,0)); dot((2,0)); dot((3,0)); dot((4,0)); dot((0,1)); dot((0,2)); dot((0,3)); dot((0,4)); dot((0,5)); dot((1,1)); dot((1,2)); dot((1,3)); dot((1,4)); dot((1,5)); dot((2,1)); dot((2,2)); dot((2,3)); dot((2,4)); dot((2,5)); dot((3,1)); dot((3,2)); dot((3,3)); dot((3,4)); dot((3,5)); dot((4,1)); dot((4,2)); dot((4,3)); dot((4,4)); dot((4,5)); label("$\circ$", (0,0)); label("$S$", (-.7,2.5)); [/asy] $\textbf{(A)}\ 1 \qquad \textbf{(B)}\ \frac{625}{144} \qquad \textbf{(C)}\ \frac{125}{24} \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ \frac{625}{24}$

2013 Turkey Team Selection Test, 3

For all real numbers $x,y,z$ such that $-2\leq x,y,z \leq 2$ and $x^2+y^2+z^2+xyz = 4$, determine the least real number $K$ satisfying \[\dfrac{z(xz+yz+y)}{xy+y^2+z^2+1} \leq K.\]

2002 Tournament Of Towns, 5

Let $AA_1,BB_1,CC_1$ be the altitudes of acute $\Delta ABC$. Let $O_a,O_b,O_c$ be the incentres of $\Delta AB_1C_1,\Delta BC_1A_1,\Delta CA_1B_1$ respectively. Also let $T_a,T_b,T_c$ be the points of tangency of the incircle of $\Delta ABC$ with $BC,CA,AB$ respectively. Prove that $T_aO_cT_bO_aT_cO_b$ is an equilateral hexagon.

1998 IMC, 6

Let $f: [0,1]\rightarrow\mathbb{R}$ be a continuous function satisfying $xf(y)+yf(x)\le 1$ for every $x,y\in[0,1]$. (a) Show that $\int^1_0 f(x)dx \le \frac{\pi}4$. (b) Find such a funtion for which equality occurs.

VI Soros Olympiad 1999 - 2000 (Russia), 10.1

For a real number $a$, denote by $(a]$ the smallest integer that is not less than $a$. Find all real values of $x$ for which holds the equality $$(\sin x]^2 + (\cos x]^2 =|tg x| +|ctg x|.$$

1990 IMO Shortlist, 5

Given a triangle $ ABC$. Let $ G$, $ I$, $ H$ be the centroid, the incenter and the orthocenter of triangle $ ABC$, respectively. Prove that $ \angle GIH > 90^{\circ}$.

2006 Germany Team Selection Test, 2

Let $A_{1}$, $B_{1}$, $C_{1}$ be the feet of the altitudes of an acute-angled triangle $ABC$ issuing from the vertices $A$, $B$, $C$, respectively. Let $K$ and $M$ be points on the segments $A_{1}C_{1}$ and $B_{1}C_{1}$, respectively, such that $\measuredangle KAM = \measuredangle A_{1}AC$. Prove that the line $AK$ is the angle bisector of the angle $C_{1}KM$.

2013 Tuymaada Olympiad, 2

Points $X$ and $Y$ inside the rhombus $ABCD$ are such that $Y$ is inside the convex quadrilateral $BXDC$ and $2\angle XBY = 2\angle XDY = \angle ABC$. Prove that the lines $AX$ and $CY$ are parallel. [i]S. Berlov[/i]

1974 IMO, 2

Let $ABC$ be a triangle. Prove that there exists a point $D$ on the side $AB$ of the triangle $ABC$, such that $CD$ is the geometric mean of $AD$ and $DB$, iff the triangle $ABC$ satisfies the inequality $\sin A\sin B\le\sin^2\frac{C}{2}$. [hide="Comment"][i]Alternative formulation, from IMO ShortList 1974, Finland 2:[/i] We consider a triangle $ABC$. Prove that: $\sin(A) \sin(B) \leq \sin^2 \left( \frac{C}{2} \right)$ is a necessary and sufficient condition for the existence of a point $D$ on the segment $AB$ so that $CD$ is the geometrical mean of $AD$ and $BD$.[/hide]

1993 Irish Math Olympiad, 5

For a complex number $ z\equal{}x\plus{}iy$ we denote by $ P(z)$ the corresponding point $ (x,y)$ in the plane. Suppose $ z_1,z_2,z_3,z_4,z_5,\alpha$ are nonzero complex numbers such that: $ (i)$ $ P(z_1),...,P(z_5)$ are vertices of a complex pentagon $ Q$ containing the origin $ O$ in its interior, and $ (ii)$ $ P(\alpha z_1),...,P(\alpha z_5)$ are all inside $ Q$. If $ \alpha\equal{}p\plus{}iq$ $ (p,q \in \mathbb{R})$, prove that $ p^2\plus{}q^2 \le 1$ and $ p\plus{}q \tan \frac{\pi}{5} \le 1$.

1998 Bulgaria National Olympiad, 3

On the sides of a non-obtuse triangle $ABC$ a square, a regular $n$-gon and a regular $m$-gon ($m$,$n > 5$) are constructed externally, so that their centers are vertices of a regular triangle. Prove that $m = n = 6$ and find the angles of $\triangle ABC$.

1974 IMO Shortlist, 10

Let $ABC$ be a triangle. Prove that there exists a point $D$ on the side $AB$ of the triangle $ABC$, such that $CD$ is the geometric mean of $AD$ and $DB$, iff the triangle $ABC$ satisfies the inequality $\sin A\sin B\le\sin^2\frac{C}{2}$. [hide="Comment"][i]Alternative formulation, from IMO ShortList 1974, Finland 2:[/i] We consider a triangle $ABC$. Prove that: $\sin(A) \sin(B) \leq \sin^2 \left( \frac{C}{2} \right)$ is a necessary and sufficient condition for the existence of a point $D$ on the segment $AB$ so that $CD$ is the geometrical mean of $AD$ and $BD$.[/hide]

2014 India National Olympiad, 5

In a acute-angled triangle $ABC$, a point $D$ lies on the segment $BC$. Let $O_1,O_2$ denote the circumcentres of triangles $ABD$ and $ACD$ respectively. Prove that the line joining the circumcentre of triangle $ABC$ and the orthocentre of triangle $O_1O_2D$ is parallel to $BC$.

1987 AMC 12/AHSME, 30

In the figure, $\triangle ABC$ has $\angle A =45^{\circ}$ and $\angle B =30^{\circ}$. A line $DE$, with $D$ on $AB$ and $\angle ADE =60^{\circ}$, divides $\triangle ABC$ into two pieces of equal area. (Note: the figure may not be accurate; perhaps $E$ is on $CB$ instead of $AC$.) The ratio $\frac{AD}{AB}$ is [asy] size((220)); draw((0,0)--(20,0)--(7,6)--cycle); draw((6,6)--(10,-1)); label("A", (0,0), W); label("B", (20,0), E); label("C", (7,6), NE); label("D", (9.5,-1), W); label("E", (5.9, 6.1), SW); label("$45^{\circ}$", (2.5,.5)); label("$60^{\circ}$", (7.8,.5)); label("$30^{\circ}$", (16.5,.5)); [/asy] $ \textbf{(A)}\ \frac{1}{\sqrt{2}} \qquad\textbf{(B)}\ \frac{2}{2+\sqrt{2}} \qquad\textbf{(C)}\ \frac{1}{\sqrt{3}} \qquad\textbf{(D)}\ \frac{1}{\sqrt[3]{6}} \qquad\textbf{(E)}\ \frac{1}{\sqrt[4]{12}} $

2013 Math Prize For Girls Problems, 17

Let $f$ be the function defined by $f(x) = -2 \sin(\pi x)$. How many values of $x$ such that $-2 \le x \le 2$ satisfy the equation $f(f(f(x))) = f(x)$?