This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2006 CentroAmerican, 6

Let $ABCD$ be a convex quadrilateral. $I=AC\cap BD$, and $E$, $H$, $F$ and $G$ are points on $AB$, $BC$, $CD$ and $DA$ respectively, such that $EF \cap GH= I$. If $M=EG \cap AC$, $N=HF \cap AC$, show that \[\frac{AM}{IM}\cdot \frac{IN}{CN}=\frac{IA}{IC}.\]

1967 IMO Shortlist, 4

[b](i)[/b] Solve the equation: \[ \sin^3(x) + \sin^3\left( \frac{2 \pi}{3} + x\right) + \sin^3\left( \frac{4 \pi}{3} + x\right) + \frac{3}{4} \cos {2x} = 0.\] [b](ii)[/b] Supposing the solutions are in the form of arcs $AB$ with one end at the point $A$, the beginning of the arcs of the trigonometric circle, and $P$ a regular polygon inscribed in the circle with one vertex in $A$, find: 1) The subsets of arcs having the other end in $B$ in one of the vertices of the regular dodecagon. 2) Prove that no solution can have the end $B$ in one of the vertices of polygon $P$ whose number of sides is prime or having factors other than 2 or 3.

2012 Balkan MO, 2

Prove that \[\sum_{cyc}(x+y)\sqrt{(z+x)(z+y)} \geq 4(xy+yz+zx),\] for all positive real numbers $x,y$ and $z$.

1996 AMC 12/AHSME, 30

A hexagon inscribed in a circle has three consecutive sides each of length $3$ and three consecutive sides each of length $5$. The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length $3$ and the other with three sides each of length $5$, has length equal to $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. $\text{(A)}\ 309 \qquad \text{(B)}\ 349 \qquad \text{(C)}\ 369 \qquad \text{(D)}\ 389\qquad \text{(E)}\ 409$

1982 Vietnam National Olympiad, 1

Determine a quadric polynomial with intergral coefficients whose roots are $\cos 72^{\circ}$ and $\cos 144^{\circ}.$

1995 All-Russian Olympiad Regional Round, 11.5

Angles $\alpha, \beta, \gamma$ satisfy the inequality $\sin \alpha +\sin \beta +\sin \gamma \ge 2$. Prove that $\cos \alpha + \cos \beta +\cos \gamma \le \sqrt5.$

2007 China Western Mathematical Olympiad, 1

Is there a triangle with sides of integer lengths such that the length of the shortest side is $ 2007$ and that the largest angle is twice the smallest?

2005 MOP Homework, 7

Let $a$, $b$, and $c$ be pairwise distinct positive integers, which are side lengths of a triangle. There is a line which cuts both the area and the perimeter of the triangle into two equal parts. This line cuts the longest side of the triangle into two parts with ratio $2:1$. Determine $a$, $b$, and $c$ for which the product abc is minimal.

2013 Sharygin Geometry Olympiad, 15

(a) Triangles $A_1B_1C_1$ and $A_2B_2C_2$ are inscribed into triangle $ABC$ so that $C_1A_1 \perp BC$, $A_1B_1 \perp CA$, $B_1C_1 \perp AB$, $B_2A_2 \perp BC$, $C_2B_2 \perp CA$, $A_2C_2 \perp AB$. Prove that these triangles are equal. (b) Points $A_1$, $B_1$, $C_1$, $A_2$, $B_2$, $C_2$ lie inside a triangle $ABC$ so that $A_1$ is on segment $AB_1$, $B_1$ is on segment $BC_1$, $C_1$ is on segment $CA_1$, $A_2$ is on segment $AC_2$, $B_2$ is on segment $BA_2$, $C_2$ is on segment $CB_2$, and the angles $BAA_1$, $CBB_2$, $ACC_1$, $CAA_2$, $ABB_2$, $BCC_2$ are equal. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ are equal.

2004 Flanders Math Olympiad, 4

Each cell of a beehive is constructed from a right regular 6-angled prism, open at the bottom and closed on the top by a regular 3-sided pyramidical mantle. The edges of this pyramid are connected to three of the rising edges of the prism and its apex $T$ is on the perpendicular line through the center $O$ of the base of the prism (see figure). Let $s$ denote the side of the base, $h$ the height of the cell and $\theta$ the angle between the line $TO$ and $TV$. (a) Prove that the surface of the cell consists of 6 congruent trapezoids and 3 congruent rhombi. (b) the total surface area of the cell is given by the formula $6sh - \dfrac{9s^2}{2\tan\theta} + \dfrac{s^2 3\sqrt{3}}{2\sin\theta}$ [img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=286[/img]

2021 Canadian Mathematical Olympiad Qualification, 7

If $A, B$ and $C$ are real angles such that $$\cos (B-C)+\cos (C-A)+\cos (A-B)=-3/2,$$ find $$\cos (A)+\cos (B)+\cos (C)$$

1998 Flanders Math Olympiad, 2

Given a cube with edges of length 1, $e$ the midpoint of $[bc]$, and $m$ midpoint of the face $cdc_1d_1$, as on the figure. Find the area of intersection of the cube with the plane through the points $a,m,e$. [img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=279[/img]

1997 China Team Selection Test, 1

Given a real number $\lambda > 1$, let $P$ be a point on the arc $BAC$ of the circumcircle of $\bigtriangleup ABC$. Extend $BP$ and $CP$ to $U$ and $V$ respectively such that $BU = \lambda BA$, $CV = \lambda CA$. Then extend $UV$ to $Q$ such that $UQ = \lambda UV$. Find the locus of point $Q$.

1998 Iran MO (2nd round), 2

Let $ABC$ be a triangle. $I$ is the incenter of $\Delta ABC$ and $D$ is the meet point of $AI$ and the circumcircle of $\Delta ABC$. Let $E,F$ be on $BD,CD$, respectively such that $IE,IF$ are perpendicular to $BD,CD$, respectively. If $IE+IF=\frac{AD}{2}$, find the value of $\angle BAC$.

2017 Bosnia and Herzegovina Team Selection Test, Problem 1

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

2005 Belarusian National Olympiad, 5

For $0<a,b,c,d<\frac{\pi}{2}$ is true that $$\cos 2a+\cos 2b+ \cos 2c+ \cos 2d= 4 (\sin a \sin b \sin c \sin d -\cos a \cos b \cos c \cos d)$$ Find all possible values of $a+b+c+d$

2014 AMC 12/AHSME, 21

In the figure, $ABCD$ is a square of side length 1. The rectangles $JKHG$ and $EBCF$ are congruent. What is $BE$? [asy] unitsize(150); pair A,B,C,D,E,F,G,H,J,K; A=(1,0); B=(0,0); C=(0,1); D=(1,1); draw(A--B--C--D--A); E=(2-sqrt(3),0); F=(2-sqrt(3),1); draw(E--F); G=(1,sqrt(3)/2); H=(2.5-sqrt(3),1); K=(2-sqrt(3),1-sqrt(3)/2); J=(0.5,0); draw(G--H--K--J--G); label("$A$",A,SE); label("$B$",B,SW); label("$C$",C,NW); label("$D$",D,NE); label("$E$",E,S); label("$F$",F,N); label("$G$",G,E); label("$H$",H,N); label("$K$",K,W); label("$J$",J,S); [/asy] $ \textbf{(A) }\dfrac{1}{2}(\sqrt{6}-2)\qquad\textbf{(B) }\dfrac{1}{4}\qquad\textbf{(C) }2-\sqrt{3}\qquad\textbf{(D) }\dfrac{\sqrt{3}}{6}\qquad\textbf{(E) }1-\dfrac{\sqrt{2}}{2} $

2010 Contests, 3

Let $ABC$ be a triangle and let $D\in (BC)$ be the foot of the $A$- altitude. The circle $w$ with the diameter $[AD]$ meet again the lines $AB$ , $AC$ in the points $K\in (AB)$ , $L\in (AC)$ respectively. Denote the meetpoint $M$ of the tangents to the circle $w$ in the points $K$ , $L$ . Prove that the ray $[AM$ is the $A$-median in $\triangle ABC$ ([b][u]Serbia[/u][/b]).

2013 Lusophon Mathematical Olympiad, 2

Let $ABC$ be an acute triangle. The circumference with diameter $AB$ intersects sides $AC$ and $BC$ at $E$ and $F$ respectively. The tangent lines to the circumference at the points $E$ and $F$ meet at $P$. Show that $P$ belongs to the altitude from $C$ of triangle $ABC$.

1983 AIME Problems, 9

Find the minimum value of \[\frac{9x^2 \sin^2 x + 4}{x \sin x}\] for $0 < x < \pi$.

2013 AIME Problems, 12

Let $S$ be the set of all polynomials of the form $z^3+az^2+bz+c$, where $a$, $b$, and $c$ are integers. Find the number of polynomials in $S$ such that each of its roots $z$ satisfies either $\left\lvert z \right\rvert = 20$ or $\left\lvert z \right\rvert = 13$.

1981 Polish MO Finals, 2

In a triangle $ABC$, the perpendicular bisectors of sides $AB$ and $AC$ intersect $BC$ at $X$ and $Y$. Prove that $BC = XY$ if and only if $\tan B\tan C = 3$ or $\tan B\tan C = -1$.

2013 China Team Selection Test, 2

Let $P$ be a given point inside the triangle $ABC$. Suppose $L,M,N$ are the midpoints of $BC, CA, AB$ respectively and \[PL: PM: PN= BC: CA: AB.\] The extensions of $AP, BP, CP$ meet the circumcircle of $ABC$ at $D,E,F$ respectively. Prove that the circumcentres of $APF, APE, BPF, BPD, CPD, CPE$ are concyclic.

2000 AMC 12/AHSME, 17

A circle centered at $ O$ has radius $ 1$ and contains the point $ A$. Segment $ AB$ is tangent to the circle at $ A$ and $ \angle{AOB} \equal{} \theta$. If point $ C$ lies on $ \overline{OA}$ and $ \overline{BC}$ bisects $ \angle{ABO}$, then $ OC \equal{}$ [asy]import olympiad; unitsize(2cm); defaultpen(fontsize(8pt)+linewidth(.8pt)); labelmargin=0.2; dotfactor=3; pair O=(0,0); pair A=(1,0); pair B=(1,1.5); pair D=bisectorpoint(A,B,O); pair C=extension(B,D,O,A); draw(Circle(O,1)); draw(O--A--B--cycle); draw(B--C); label("$O$",O,SW); dot(O); label("$\theta$",(0.1,0.05),ENE); dot(C); label("$C$",C,S); dot(A); label("$A$",A,E); dot(B); label("$B$",B,E);[/asy] $ \textbf{(A)}\ \sec^2\theta \minus{} \tan\theta \qquad \textbf{(B)}\ \frac {1}{2} \qquad \textbf{(C)}\ \frac {\cos^2\theta}{1 \plus{} \sin\theta} \qquad \textbf{(D)}\ \frac {1}{1 \plus{} \sin\theta} \qquad \textbf{(E)}\ \frac {\sin\theta}{\cos^2\theta}$

1986 IMO Longlists, 41

Let $M,N,P$ be the midpoints of the sides $BC, CA, AB$ of a triangle $ABC$. The lines $AM, BN, CP$ intersect the circumcircle of $ABC$ at points $A',B', C'$, respectively. Show that if $A'B'C'$ is an equilateral triangle, then so is $ABC.$