Found problems: 3349
1997 IMO Shortlist, 23
Let $ ABCD$ be a convex quadrilateral. The diagonals $ AC$ and $ BD$ intersect at $ K$. Show that $ ABCD$ is cyclic if and only if $ AK \sin A \plus{} CK \sin C \equal{} BK \sin B \plus{} DK \sin D$.
2014 ISI Entrance Examination, 4
Let $f,g$ are defined in $(a,b)$ such that $f(x),g(x)\in\mathcal{C}^2$ and non-decreasing in an interval $(a,b)$ . Also suppose $f^{\prime \prime}(x)=g(x),g^{\prime \prime}(x)=f(x)$. Also it is given that $f(x)g(x)$ is linear in $(a,b)$. Show that $f\equiv 0 \text{ and } g\equiv 0$ in $(a,b)$.
2006 Moldova Team Selection Test, 1
Let the point $P$ in the interior of the triangle $ABC$. $(AP, (BP, (CP$ intersect the circumcircle of $ABC$ at $A_{1}, B_{1}, C_{1}$. Prove that the maximal value of the sum of the areas $A_{1}BC$, $B_{1}AC$, $C_{1}AB$ is $p(R-r)$, where $p, r, R$ are the usual notations for the triangle $ABC$.
2013 IMC, 2
Let $\displaystyle{f:{\cal R} \to {\cal R}}$ be a twice differentiable function. Suppose $\displaystyle{f\left( 0 \right) = 0}$. Prove there exists $\displaystyle{\xi \in \left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)}$ such that \[\displaystyle{f''\left( \xi \right) = f\left( \xi \right)\left( {1 + 2{{\tan }^2}\xi } \right)}.\]
[i]Proposed by Karen Keryan, Yerevan State University, Yerevan, Armenia.[/i]
2005 IberoAmerican Olympiad For University Students, 4
A variable tangent $t$ to the circle $C_1$, of radius $r_1$, intersects the circle $C_2$, of radius $r_2$ in $A$ and $B$. The tangents to $C_2$ through $A$ and $B$ intersect in $P$.
Find, as a function of $r_1$ and $r_2$, the distance between the centers of $C_1$ and $C_2$ such that the locus of $P$ when $t$ varies is contained in an equilateral hyperbola.
[b]Note[/b]: A hyperbola is said to be [i]equilateral[/i] if its asymptotes are perpendicular.
2002 France Team Selection Test, 2
Let $ ABC$ be a non-equilateral triangle. Denote by $ I$ the incenter and by $ O$ the circumcenter of the triangle $ ABC$. Prove that $ \angle AIO\leq\frac{\pi}{2}$ holds if and only if $ 2\cdot BC\leq AB\plus{}AC$.
2012 AMC 12/AHSME, 17
Square $PQRS$ lies in the first quadrant. Points $(3,0), (5,0), (7,0),$ and $(13,0)$ lie on lines $SP, RQ, PQ$, and $SR$, respectively. What is the sum of the coordinates of the center of the square $PQRS$?
$ \textbf{(A)}\ 6\qquad\textbf{(B)}\ 6.2\qquad\textbf{(C)}\ 6.4\qquad\textbf{(D)}\ 6.6\qquad\textbf{(E)}\ 6.8 $
2012 India IMO Training Camp, 1
Let $ABC$ be an isosceles triangle with $AB=AC$. Let $D$ be a point on the segment $BC$ such that $BD=2DC$. Let $P$ be a point on the segment $AD$ such that $\angle BAC=\angle BPD$. Prove that $\angle BAC=2\angle DPC$.
1998 USAMTS Problems, 5
In the figure on the right, $O$ is the center of the circle, $OK$ and $OA$ are perpendicular to one another, $M$ is the midpoint of $OK$, $BN$ is parallel to $OK$, and $\angle AMN=\angle NMO$. Determine the measure of $\angle A B N$ in degrees.
[asy]
defaultpen(linewidth(0.7)+fontsize(10));
pair O=origin, A=dir(90), K=dir(180), M=0.5*dir(180), N=2/5*dir(90), B=dir(degrees((2/5, sqrt(21/25)))+90);
draw(K--O--A--M--N--B--A^^Circle(origin,1));
label("$A$", A, dir(O--A));
label("$K$", K, dir(O--K));
label("$B$", B, dir(O--B));
label("$N$", N, E);
label("$M$", M, S);
label("$O$", O, SE);[/asy]
2006 Harvard-MIT Mathematics Tournament, 2
Compute $\displaystyle\lim_{x\to 0}\dfrac{e^{x\cos x}-1-x}{\sin(x^2)}.$
2002 AMC 12/AHSME, 23
In triangle $ ABC$, side $ AC$ and the perpendicular bisector of $ BC$ meet in point $ D$, and $ BD$ bisects $ \angle ABC$. If $ AD \equal{} 9$ and $ DC \equal{} 7$, what is the area of triangle $ ABD$?
$ \textbf{(A)}\ 14 \qquad \textbf{(B)}\ 21 \qquad \textbf{(C)}\ 28 \qquad \textbf{(D)}\ 14\sqrt5 \qquad \textbf{(E)}\ 28\sqrt5$
2009 USA Team Selection Test, 4
Let $ ABP, BCQ, CAR$ be three non-overlapping triangles erected outside of acute triangle $ ABC$. Let $ M$ be the midpoint of segment $ AP$. Given that $ \angle PAB \equal{} \angle CQB \equal{} 45^\circ$, $ \angle ABP \equal{} \angle QBC \equal{} 75^\circ$, $ \angle RAC \equal{} 105^\circ$, and $ RQ^2 \equal{} 6CM^2$, compute $ AC^2/AR^2$.
[i]Zuming Feng.[/i]
2007 Today's Calculation Of Integral, 197
Let $|a|<\frac{\pi}{2}.$ Evaluate the following definite integral.
\[\int_{0}^{\frac{\pi}{2}}\frac{dx}{\{\sin (a+x)+\cos x\}^{2}}\]
1966 IMO Longlists, 25
Prove that \[\tan 7 30^{\prime }=\sqrt{6}+\sqrt{2}-\sqrt{3}-2.\]
2022 AMC 12/AHSME, 12
Let $M$ be the midpoint of $\overline{AB}$ in regular tetrahedron $ABCD$. What is $\cos({\angle CMD})$?
$\textbf{(A)} ~\frac{1}{4} \qquad\textbf{(B)} ~\frac{1}{3} \qquad\textbf{(C)} ~\frac{2}{5} \qquad\textbf{(D)} ~\frac{1}{2} \qquad\textbf{(E)} ~\frac{\sqrt{3}}{2} $
2015 NIMO Problems, 6
Let $\triangle ABC$ be a triangle with $BC = 4, CA= 5, AB= 6$, and let $O$ be the circumcenter of $\triangle ABC$. Let $O_b$ and $O_c$ be the reflections of $O$ about lines $CA$ and $AB$ respectively. Suppose $BO_b$ and $CO_c$ intersect at $T$, and let $M$ be the midpoint of $BC$. Given that $MT^2 = \frac{p}{q}$ for some coprime positive integers $p$ and $q$, find $p+q$.
[i]Proposed by Sreejato Bhattacharya[/i]
1971 IMO, 1
All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$.
[b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length;
[b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.
2001 Swedish Mathematical Competition, 3
Show that if $b = \frac{a+c}{2}$ in the triangle $ABC$, then $\cos (A-C) + 4 \cos B = 3$.
2011 Uzbekistan National Olympiad, 2
Let triangle ABC with $ AB=c$ $AC=b$ $BC=a$ $R$ circumradius, $p$ half peremetr of $ABC$.
I f $\frac{acosA+bcosB+ccosC}{asinA+bsinB+csinC}=\frac{p}{9R}$ then find all value of $cosA$.
2007 Purple Comet Problems, 4
To the nearest degree, find the measure of the largest angle in a triangle with side lengths $3$, $5$, and $7$.
2010 Sharygin Geometry Olympiad, 2
Bisectors $AA_1$ and $BB_1$ of a right triangle $ABC \ (\angle C=90^\circ )$ meet at a point $I.$ Let $O$ be the circumcenter of triangle $CA_1B_1.$ Prove that $OI \perp AB.$
2013 India IMO Training Camp, 2
In a triangle $ABC$, let $I$ denote its incenter. Points $D, E, F$ are chosen on the segments $BC, CA, AB$, respectively, such that $BD + BF = AC$ and $CD + CE = AB$. The circumcircles of triangles $AEF, BFD, CDE$ intersect lines $AI, BI, CI$, respectively, at points $K, L, M$ (different from $A, B, C$), respectively. Prove that $K, L, M, I$ are concyclic.
1966 IMO Shortlist, 61
Prove that for every natural number $n$, and for every real number $x \neq \frac{k\pi}{2^t}$ ($t=0,1, \dots, n$; $k$ any integer) \[ \frac{1}{\sin{2x}}+\frac{1}{\sin{4x}}+\dots+\frac{1}{\sin{2^nx}}=\cot{x}-\cot{2^nx} \]
2010 Germany Team Selection Test, 3
Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$.
[i]Proposed by Nikolay Beluhov, Bulgaria[/i]
2011 National Olympiad First Round, 17
Let $D$ be a point inside the equilateral triangle $\triangle ABC$ such that $|AD|=\sqrt{2}, |BD|=3, |CD|=\sqrt{5}$. $m(\widehat{ADB}) = ?$
$\textbf{(A)}\ 120^{\circ} \qquad\textbf{(B)}\ 105^{\circ} \qquad\textbf{(C)}\ 100^{\circ} \qquad\textbf{(D)}\ 95^{\circ} \qquad\textbf{(E)}\ 90^{\circ}$