Found problems: 3349
2009 Iran Team Selection Test, 1
Let $ ABC$ be a triangle and $ A'$ , $ B'$ and $ C'$ lie on $ BC$ , $ CA$ and $ AB$ respectively such that the incenter of $ A'B'C'$ and $ ABC$ are coincide and the inradius of $ A'B'C'$ is half of inradius of $ ABC$ . Prove that $ ABC$ is equilateral .
2007 AIME Problems, 15
Let $ABC$ be an equilateral triangle, and let $D$ and $F$ be points on sides $BC$ and $AB$, respectively, with $FA=5$ and $CD=2$. Point $E$ lies on side $CA$ such that $\angle DEF = 60^\circ$. The area of triangle $DEF$ is $14\sqrt{3}$. The two possible values of the length of side $AB$ are $p \pm q\sqrt{r}$, where $p$ and $q$ are rational, and $r$ is an integer not divisible by the square of a prime. Find $r$.
1999 Vietnam National Olympiad, 2
$ OA, OB, OC, OD$ are 4 rays in space such that the angle between any two is the same. Show that for a variable ray $ OX,$ the sum of the cosines of the angles $ XOA, XOB, XOC, XOD$ is constant and the sum of the squares of the cosines is also constant.
2015 China National Olympiad, 2
Let $ A, B, D, E, F, C $ be six points lie on a circle (in order) satisfy $ AB=AC $ .
Let $ P=AD \cap BE, R=AF \cap CE, Q=BF \cap CD, S=AD \cap BF, T=AF \cap CD $ .
Let $ K $ be a point lie on $ ST $ satisfy $ \angle QKS=\angle ECA $ .
Prove that $ \frac{SK}{KT}=\frac{PQ}{QR} $
1993 Baltic Way, 18
In the triangle $ABC$, $|AB|=15,|BC|=12,|AC|=13$. Let the median $AM$ and bisector $BK$ intersect at point $O$, where $M\in BC,K\in AC$. Let $OL\perp AB,L\in AB$. Prove that $\angle OLK=\angle OLM$.
2011 AIME Problems, 13
Point $P$ lies on the diagonal $AC$ of square $ABCD$ with $AP>CP$. Let $O_1$ and $O_2$ be the circumcenters of triangles $ABP$ and $CDP$ respectively. Given that $AB=12$ and $\angle O_1 P O_2 = 120^\circ$, then $AP=\sqrt{a}+\sqrt{b}$ where $a$ and $b$ are positive integers. Find $a+b$.
1991 Arnold's Trivium, 59
Investigate the existence and uniqueness of the solution of the problem $yu_x = xu_y, u|_{x=1} =\cos y$ in a neighbourhood of the point $(1, y_0)$.
2001 China Team Selection Test, 2
Let ${a_n}$ be a non-increasing sequence of positive numbers. Prove that if for $n \ge 2001$, $na_{n} \le 1$, then for any positive integer $m \ge 2001$ and $x \in \mathbb{R}$, the following inequality holds:
$\left | \sum_{k=2001}^{m} a_{k} \sin kx \right | \le 1 + \pi$
2013 Sharygin Geometry Olympiad, 15
(a) Triangles $A_1B_1C_1$ and $A_2B_2C_2$ are inscribed into triangle $ABC$ so that $C_1A_1 \perp BC$, $A_1B_1 \perp CA$, $B_1C_1 \perp AB$, $B_2A_2 \perp BC$, $C_2B_2 \perp CA$, $A_2C_2 \perp AB$. Prove that these triangles are equal.
(b) Points $A_1$, $B_1$, $C_1$, $A_2$, $B_2$, $C_2$ lie inside a triangle $ABC$ so that $A_1$ is on segment $AB_1$, $B_1$ is on segment $BC_1$, $C_1$ is on segment $CA_1$, $A_2$ is on segment $AC_2$, $B_2$ is on segment $BA_2$, $C_2$ is on segment $CB_2$, and the angles $BAA_1$, $CBB_2$, $ACC_1$, $CAA_2$, $ABB_2$, $BCC_2$ are equal. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ are equal.
2009 Argentina National Olympiad, 3
Isosceles trapezoid $ ABCD$, with $ AB \parallel CD$, is such that there exists a circle $ \Gamma$ tangent to its four sides. Let $ T \equal{} \Gamma \cap BC$, and $ P \equal{} \Gamma \cap AT$ ($ P \neq T$).
If $ \frac{AP}{AT} \equal{} \frac{2}{5}$, compute $ \frac{AB}{CD}$.
2020 MBMT, 39
Let $f(x) = \sqrt{4x^2 - 4x^4}$. Let $A$ be the number of real numbers $x$ that satisfy
$$f(f(f(\dots f(x)\dots ))) = x,$$ where the function $f$ is applied to $x$ 2020 times. Compute $A \pmod {1000}$.
[i]Proposed by Timothy Qian[/i]
2014 Turkey Team Selection Test, 1
Let $P$ be a point inside the acute triangle $ABC$ with $m(\widehat{PAC})=m(\widehat{PCB})$. $D$ is the midpoint of the segment $PC$. $AP$ and $BC$ intersect at $E$, and $BP$ and $DE$ intersect at $Q$. Prove that $\sin\widehat{BCQ}=\sin\widehat{BAP}$.
1961 IMO Shortlist, 3
Solve the equation $\cos^n{x}-\sin^n{x}=1$ where $n$ is a natural number.
2012 National Olympiad First Round, 29
Let $D$ and $E$ be points on $[BC]$ and $[AC]$ of acute $\triangle ABC$, respectively. $AD$ and $BE$ meet at $F$. If $|AF|=|CD|=2|BF|=2|CE|$, and $Area(\triangle ABF) = Area(\triangle DEC)$, then $Area(\triangle AFC)/Area(\triangle BFC) = ?$
$ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 2\sqrt2 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \sqrt2 \qquad \textbf{(E)}\ 1$
2016 India Regional Mathematical Olympiad, 4
Prove that $(4\cos^29^o – 3) (4 \cos^227^o– 3) = \tan 9^o$.
2012 Today's Calculation Of Integral, 819
For real numbers $a,\ b$ with $0\leq a\leq \pi,\ a<b$, let $I(a,\ b)=\int_{a}^{b} e^{-x} \sin x\ dx.$
Determine the value of $a$ such that $\lim_{b\rightarrow \infty} I(a,\ b)=0.$
2006 AMC 12/AHSME, 23
Isosceles $ \triangle ABC$ has a right angle at $ C$. Point $ P$ is inside $ \triangle ABC$, such that $ PA \equal{} 11, PB \equal{} 7,$ and $ PC \equal{} 6$. Legs $ \overline{AC}$ and $ \overline{BC}$ have length $ s \equal{} \sqrt {a \plus{} b\sqrt {2}}$, where $ a$ and $ b$ are positive integers. What is $ a \plus{} b$?
[asy]pointpen = black;
pathpen = linewidth(0.7);
pen f = fontsize(10);
size(5cm);
pair B = (0,sqrt(85+42*sqrt(2)));
pair A = (B.y,0);
pair C = (0,0);
pair P = IP(arc(B,7,180,360),arc(C,6,0,90));
D(A--B--C--cycle);
D(P--A);
D(P--B);
D(P--C);
MP("A",D(A),plain.E,f);
MP("B",D(B),plain.N,f);
MP("C",D(C),plain.SW,f);
MP("P",D(P),plain.NE,f);[/asy]
$ \textbf{(A) } 85 \qquad \textbf{(B) } 91 \qquad \textbf{(C) } 108 \qquad \textbf{(D) } 121 \qquad \textbf{(E) } 127$
1969 IMO Shortlist, 37
$(HUN 4)$IMO2 If $a_1, a_2, . . . , a_n$ are real constants, and if $y = \cos(a_1 + x) +2\cos(a_2+x)+ \cdots+ n \cos(a_n + x)$ has two zeros $x_1$ and $x_2$ whose difference is not a multiple of $\pi$, prove that $y = 0.$
2002 AMC 12/AHSME, 23
In $ \triangle{ABC}$, we have $ AB\equal{}1$ and $ AC\equal{}2$. Side $ BC$ and the median from $ A$ to $ BC$ have the same length. What is $ BC$?
$ \textbf{(A)}\ \frac{1\plus{}\sqrt2}{2} \qquad
\textbf{(B)}\ \frac{1\plus{}\sqrt3}{2} \qquad
\textbf{(C)}\ \sqrt2 \qquad
\textbf{(D)}\ \frac{3}{2} \qquad
\textbf{(E)}\ \sqrt3$
II Soros Olympiad 1995 - 96 (Russia), 11.2
Solve the equation $$arc \sin (\sin x) + arc \cos (\cos x)=0$$
PEN G Problems, 10
Show that $\frac{1}{\pi} \arccos \left( \frac{1}{\sqrt{2003}} \right)$ is irrational.
2022 AMC 12/AHSME, 10
Regular hexagon $ABCDEF$ has side length $2$. Let $G$ be the midpoint of $\overline{AB}$, and let $H$ be the midpoint of $\overline{DE}$. What is the perimeter of $GCHF$?
$ \textbf{(A)}\ 4\sqrt3 \qquad
\textbf{(B)}\ 8 \qquad
\textbf{(C)}\ 4\sqrt5 \qquad
\textbf{(D)}\ 4\sqrt7 \qquad
\textbf{(E)}\ 12$
2000 IMO Shortlist, 5
The tangents at $B$ and $A$ to the circumcircle of an acute angled triangle $ABC$ meet the tangent at $C$ at $T$ and $U$ respectively. $AT$ meets $BC$ at $P$, and $Q$ is the midpoint of $AP$; $BU$ meets $CA$ at $R$, and $S$ is the midpoint of $BR$. Prove that $\angle ABQ=\angle BAS$. Determine, in terms of ratios of side lengths, the triangles for which this angle is a maximum.
2002 Iran MO (3rd Round), 7
In triangle $ABC$, $AD$ is angle bisector ($D$ is on $BC$) if $AB+AD=CD$ and $AC+AD=BC$, what are the angles of $ABC$?