This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2008 Turkey Team Selection Test, 5

$ D$ is a point on the edge $ BC$ of triangle $ ABC$ such that $ AD\equal{}\frac{BD^2}{AB\plus{}AD}\equal{}\frac{CD^2}{AC\plus{}AD}$. $ E$ is a point such that $ D$ is on $ [AE]$ and $ CD\equal{}\frac{DE^2}{CD\plus{}CE}$. Prove that $ AE\equal{}AB\plus{}AC$.

Today's calculation of integrals, 886

Find the functions $f(x),\ g(x)$ such that $f(x)=e^{x}\sin x+\int_0^{\pi} ug(u)\ du$ $g(x)=e^{x}\cos x+\int_0^{\pi} uf(u)\ du$

2007 AMC 10, 11

A circle passes through the three vertices of an isosceles triangle that has two sides of length $ 3$ and a base of length $ 2$. What is the area of this circle? $ \textbf{(A)}\ 2\pi\qquad \textbf{(B)}\ \frac {5}{2}\pi\qquad \textbf{(C)}\ \frac {81}{32}\pi\qquad \textbf{(D)}\ 3\pi\qquad \textbf{(E)}\ \frac {7}{2}\pi$

2004 AMC 12/AHSME, 21

If $ \displaystyle \sum_{n \equal{} 0}^{\infty} \cos^{2n} \theta \equal{} 5$, what is the value of $ \cos{2\theta}$? $ \textbf{(A)}\ \frac15 \qquad \textbf{(B)}\ \frac25 \qquad \textbf{(C)}\ \frac {\sqrt5}{5}\qquad \textbf{(D)}\ \frac35 \qquad \textbf{(E)}\ \frac45$

2005 AIME Problems, 12

Square $ABCD$ has center $O$, $AB=900$, $E$ and $F$ are on $AB$ with $AE<BF$ and $E$ between $A$ and $F$, $m\angle EOF =45^\circ$, and $EF=400$. Given that $BF=p+q\sqrt{r}$, wherer $p,q,$ and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.

2013 Today's Calculation Of Integral, 878

A cubic function $f(x)$ satisfies the equation $\sin 3t=f(\sin t)$ for all real numbers $t$. Evaluate $\int_0^1 f(x)^2\sqrt{1-x^2}\ dx$.

2006 Romania Team Selection Test, 1

The circle of center $I$ is inscribed in the convex quadrilateral $ABCD$. Let $M$ and $N$ be points on the segments $AI$ and $CI$, respectively, such that $\angle MBN = \frac 12 \angle ABC$. Prove that $\angle MDN = \frac 12 \angle ADC$.

2000 AIME Problems, 9

Tags: trigonometry
Given that $z$ is a complex number such that $z+\frac 1z=2\cos 3^\circ,$ find the least integer that is greater than $z^{2000}+\frac 1{z^{2000}}.$

2002 Tuymaada Olympiad, 3

The points $D$ and $E$ on the circumcircle of an acute triangle $ABC$ are such that $AD=AE = BC$. Let $H$ be the common point of the altitudes of triangle $ABC$. It is known that $AH^{2}=BH^{2}+CH^{2}$. Prove that $H$ lies on the segment $DE$. [i]Proposed by D. Shiryaev[/i]

1977 Polish MO Finals, 1

Let $ABCD$ be a tetrahedron with $\angle BAD = 60^{\cdot}$, $\angle BAC = 40^{\cdot}$, $\angle ABD = 80^{\cdot}$, $\angle ABC = 70^{\cdot}$. Prove that the lines $AB$ and $CD$ are perpendicular.

1969 Bulgaria National Olympiad, Problem 5

Prove the equality $$\prod_{k=1}^{2m}\cos\frac{k\pi}{2m+1}=\frac{(-1)^m}{4m}.$$

2008 China Team Selection Test, 3

Find all positive integers $ n$ having the following properties:in two-dimensional Cartesian coordinates, there exists a convex $ n$ lattice polygon whose lengths of all sides are odd numbers, and unequal to each other. (where lattice polygon is defined as polygon whose coordinates of all vertices are integers in Cartesian coordinates.)

2010 Today's Calculation Of Integral, 572

For integer $ n,\ a_n$ is difined by $ a_n\equal{}\int_0^{\frac{\pi}{4}} (\cos x)^ndx$. (1) Find $ a_{\minus{}2},\ a_{\minus{}1}$. (2) Find the relation of $ a_n$ and $ a_{n\minus{}2}$. (3) Prove that $ a_{2n}\equal{}b_n\plus{}\pi c_n$ for some rational number $ b_n,\ c_n$, then find $ c_n$ for $ n<0$.

1980 All Soviet Union Mathematical Olympiad, 292

Find real solutions of the system : $$\begin{cases} \sin x + 2 \sin (x+y+z) = 0 \\ \sin y + 3 \sin (x+y+z) = 0\\ \sin z + 4 \sin (x+y+z) = 0\end{cases}$$

2014 China Team Selection Test, 4

Given circle $O$ with radius $R$, the inscribed triangle $ABC$ is an acute scalene triangle, where $AB$ is the largest side. $AH_A, BH_B,CH_C$ are heights on $BC,CA,AB$. Let $D$ be the symmetric point of $H_A$ with respect to $H_BH_C$, $E$ be the symmetric point of $H_B$ with respect to $H_AH_C$. $P$ is the intersection of $AD,BE$, $H$ is the orthocentre of $\triangle ABC$. Prove: $OP\cdot OH$ is fixed, and find this value in terms of $R$. (Edited)

2006 National Olympiad First Round, 29

Let $I$ be the center of incircle of $\triangle ABC$, and $J$ be the center of excircle tangent to $[BC]$. If $m(\widehat B) = 45^\circ$, $m(\widehat A) = 120^\circ$, and $|IJ|=\sqrt 3$, then what is $|BC|$? $ \textbf{(A)}\ \frac 32 \qquad\textbf{(B)}\ \frac {\sqrt 3}2 \qquad\textbf{(C)}\ \frac 34 \qquad\textbf{(D)}\ \frac {\sqrt 6}2 \qquad\textbf{(E)}\ \sqrt3 - 1 $

1991 IMTS, 4

Let $\triangle ABC$ be an arbitary triangle, and construct $P,Q,R$ so that each of the angles marked is $30^\circ$. Prove that $\triangle PQR$ is an equilateral triangle. [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair ext30(pair pt1, pair pt2) { pair r1 = pt1+rotate(-30)*(pt2-pt1), r2 = pt2+rotate(30)*(pt1-pt2); draw(anglemark(r1,pt1,pt2,25)); draw(anglemark(pt1,pt2,r2,25)); return intersectionpoints(pt1--r1, pt2--r2)[0]; } pair A = (0,0), B=(10,0), C=(3,7), P=ext30(B,C), Q=ext30(C,A), R=ext30(A,B); draw(A--B--C--A--R--B--P--C--Q--A); draw(P--Q--R--cycle, linetype("8 8")); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$P$", P, NE); label("$Q$", Q, NW); label("$R$", R, S);[/asy]

1981 Canada National Olympiad, 2

Given a circle of radius $r$ and a tangent line $\ell$ to the circle through a given point $P$ on the circle. From a variable point $R$ on the circle, a perpendicular $RQ$ is drawn to $\ell$ with $Q$ on $\ell$. Determine the maximum of the area of triangle $PQR$.

1997 IMO Shortlist, 16

In an acute-angled triangle $ ABC,$ let $ AD,BE$ be altitudes and $ AP,BQ$ internal bisectors. Denote by $ I$ and $ O$ the incenter and the circumcentre of the triangle, respectively. Prove that the points $ D, E,$ and $ I$ are collinear if and only if the points $ P, Q,$ and $ O$ are collinear.

1984 AMC 12/AHSME, 26

In the obtuse triangle $ABC$, $AM = MB, MD \perp BC, EC \perp BC$. If the area of $\triangle ABC$ is 24, then the area of $\triangle BED$ is [asy] size(200); defaultpen(linewidth(0.8)+fontsize(11pt)); pair A = (6.5,3.2), B = origin, C = (5.0), D = (3.3,0); pair Xc = (C.x,4), Xd = (D.x,4), E = intersectionpoint(A--B,C--Xc), M = intersectionpoint(D--Xd, A--B); draw(C--A--B--C--E--D--M); label("$A$",A,NE); label("$B$",B,W); label("$C$",C,SE); label("$D$",D,S); label("$E$",E,N); label("$M$",M,N); draw(rightanglemark(D,C,E,7)^^rightanglemark(B,D,M,7)); [/asy] $\textbf{(A) }9\qquad \textbf{(B) }12\qquad \textbf{(C) }15\qquad \textbf{(D) }18\qquad \textbf{(E) }\text{not uniquely determined}$

1952 Moscow Mathematical Olympiad, 218

How $arc \sin(\cos(arc \sin x))$ and $arc \cos(\sin(arc \cos x))$ are related with each other?

2006 AMC 12/AHSME, 24

Let $ S$ be the set of all points $ (x,y)$ in the coordinate plane such that $ 0\le x\le \frac \pi2$ and $ 0\le y\le \frac \pi2$. What is the area of the subset of $ S$ for which \[ \sin^2 x \minus{} \sin x\sin y \plus{} \sin^2 y\le \frac 34? \]$ \textbf{(A) } \frac {\pi^2}9 \qquad \textbf{(B) } \frac {\pi^2}8 \qquad \textbf{(C) } \frac {\pi^2}6\qquad \textbf{(D) } \frac {3\pi^2}{16} \qquad \textbf{(E) } \frac {2\pi^2}9$

2002 AMC 10, 25

In trapezoid $ ABCD$ with bases $ AB$ and $ CD$, we have $ AB\equal{}52$, $ BC\equal{}12$, $ CD\equal{}39$, and $ DA\equal{}5$. The area of $ ABCD$ is [asy] pair A,B,C,D; A=(0,0); B=(52,0); C=(38,20); D=(5,20); dot(A); dot(B); dot(C); dot(D); draw(A--B--C--D--cycle); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",D,N); label("52",(A+B)/2,S); label("39",(C+D)/2,N); label("12",(B+C)/2,E); label("5",(D+A)/2,W);[/asy] $ \text{(A)}\ 182 \qquad \text{(B)}\ 195 \qquad \text{(C)}\ 210 \qquad \text{(D)}\ 234 \qquad \text{(E)}\ 260$

2013 IPhOO, 8

[asy]size(8cm); real w = 2.718; // width of block real W = 13.37; // width of the floor real h = 1.414; // height of block real H = 7; // height of block + string real t = 60; // measure of theta pair apex = (w/2, H); // point where the strings meet path block = (0,0)--(w,0)--(w,h)--(0,h)--cycle; // construct the block draw(shift(-W/2,0)*block); // draws white block path arrow = (w,h/2)--(w+W/8,h/2); // path of the arrow draw(shift(-W/2,0)*arrow, EndArrow); // draw the arrow picture pendulum; // making a pendulum... draw(pendulum, block); // block fill(pendulum, block, grey); // shades block draw(pendulum, (w/2,h)--apex); // adds in string add(pendulum); // adds in block + string add(rotate(t, apex) * pendulum); // adds in rotated block + string dot("$\theta$", apex, dir(-90+t/2)*3.14); // marks the apex and labels it with theta draw((apex-(w,0))--(apex+(w,0))); // ceiling draw((-W/2-w/2,0)--(w+W/2,0)); // floor[/asy] A block of mass $m=\text{4.2 kg}$ slides through a frictionless table with speed $v$ and collides with a block of identical mass $m$, initially at rest, that hangs on a pendulum as shown above. The collision is perfectly elastic and the pendulum block swings up to an angle $\theta=12^\circ$, as labeled in the diagram. It takes a time $ t = \text {1.0 s} $ for the block to swing up to this peak. Find $10v$, in $\text{m/s}$ and round to the nearest integer. Do not approximate $ \theta \approx 0 $; however, assume $\theta$ is small enough as to use the small-angle approximation for the period of the pendulum. [i](Ahaan Rungta, 6 points)[/i]

2011 Canadian Mathematical Olympiad Qualification Repechage, 1

In the diagram, the circle has radius $\sqrt 7$ and and centre $O.$ Points $A, B$ and $C$ are on the circle. If $\angle BOC=120^\circ$ and $AC = AB + 1,$ determine the length of $AB.$ [asy] import graph; size(120); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen qqttff = rgb(0,0.2,1); pen xdxdff = rgb(0.49,0.49,1); pen fftttt = rgb(1,0.2,0.2); draw(circle((2.34,2.4),2.01),qqttff); draw((2.34,2.4)--(1.09,0.82),fftttt); draw((2.34,2.4)--(4.1,1.41),fftttt); draw((1.09,0.82)--(1.4,4.18),fftttt); draw((4.1,1.41)--(1.4,4.18),fftttt); dot((2.34,2.4),ds); label("$O$", (2.1,2.66),NE*lsf); dot((1.09,0.82),ds); label("$B$", (0.86,0.46),NE*lsf); dot((4.1,1.41),ds); label("$C$", (4.2,1.08),NE*lsf); dot((1.4,4.18),ds); label("$A$", (1.22,4.48),NE*lsf); clip((-4.34,-10.94)--(-4.34,6.3)--(16.14,6.3)--(16.14,-10.94)--cycle); [/asy]