This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2010 Balkan MO, 3

A strip of width $w$ is the set of all points which lie on, or between, two parallel lines distance $w$ apart. Let $S$ be a set of $n$ ($n \ge 3$) points on the plane such that any three different points of $S$ can be covered by a strip of width $1$. Prove that $S$ can be covered by a strip of width $2$.

2012 Romania Team Selection Test, 1

Let $\Delta ABC$ be a triangle. The internal bisectors of angles $\angle CAB$ and $\angle ABC$ intersect segments $BC$, respectively $AC$ in $D$, respectively $E$. Prove that \[DE\leq (3-2\sqrt{2})(AB+BC+CA).\]

2014 PUMaC Geometry B, 5

Consider the cyclic quadrilateral with side lengths $1$, $4$, $8$, $7$ in that order. What is its circumdiameter? Let the answer be of the form $a\sqrt b+c$, for $b$ squarefree. Find $a+b+c$.

2008 India Regional Mathematical Olympiad, 6

Let $BCDK$ be a convex quadrilateral such that $BC=BK$ and $DC=DK$. $A$ and $E$ are points such that $ABCDE$ is a convex pentagon such that $AB=BC$ and $DE=DC$ and $K$ lies in the interior of the pentagon $ABCDE$. If $\angle ABC=120^{\circ}$ and $\angle CDE=60^{\circ}$ and $BD=2$ then determine area of the pentagon $ABCDE$.

2010 Sharygin Geometry Olympiad, 16

A circle touches the sides of an angle with vertex $A$ at points $B$ and $C.$ A line passing through $A$ intersects this circle in points $D$ and $E.$ A chord $BX$ is parallel to $DE.$ Prove that $XC$ passes through the midpoint of the segment $DE.$

2005 Today's Calculation Of Integral, 25

Let $|a|<\frac{\pi}{2}$. Evaluate \[\int_0^{\frac{\pi}{2}} \frac{dx}{\{\sin (a+x)+\cos x\}^2}\]

1975 Chisinau City MO, 116

The sides of a triangle are equal to $\sqrt2, \sqrt3, \sqrt4$ and its angles are $\alpha, \beta, \gamma$, respectively. Prove that the equation $x\sin \alpha + y\sin \beta + z\sin \gamma = 0$ has exactly one solution in integers $x, y, z$.

1977 IMO Longlists, 6

Let $x_1, x_2, \ldots , x_n \ (n \geq 1)$ be real numbers such that $0 \leq x_j \leq \pi, \ j = 1, 2,\ldots, n.$ Prove that if $\sum_{j=1}^n (\cos x_j +1) $ is an odd integer, then $\sum_{j=1}^n \sin x_j \geq 1.$

2001 China National Olympiad, 1

Let $a$ be real number with $\sqrt{2}<a<2$, and let $ABCD$ be a convex cyclic quadrilateral whose circumcentre $O$ lies in its interior. The quadrilateral's circumcircle $\omega$ has radius $1$, and the longest and shortest sides of the quadrilateral have length $a$ and $\sqrt{4-a^2}$, respectively. Lines $L_A,L_B,L_C,L_D$ are tangent to $\omega$ at $A,B,C,D$, respectively. Let lines $L_A$ and $L_B$, $L_B$ and $L_C$,$L_C$ and $L_D$,$L_D$ and $L_A$ intersect at $A',B',C',D'$ respectively. Determine the minimum value of $\frac{S_{A'B'C'D'}}{S_{ABCD}}$.

2002 AMC 12/AHSME, 17

Let $f(x)=\sqrt{\sin^4 x + 4\cos^2 x}-\sqrt{\cos^4x + 4\sin^2x}$. An equivalent form of $f(x)$ is $\textbf{(A) }1-\sqrt2\sin x\qquad\textbf{(B) }-1+\sqrt2\cos x\qquad\textbf{(C) }\cos\dfrac x2-\sin\dfrac x2$ $\textbf{(D) }\cos x-\sin x\qquad\textbf{(E) }\cos2x$

1990 Federal Competition For Advanced Students, P2, 6

A convex pentagon $ ABCDE$ is inscribed in a circle. The distances of $ A$ from the lines $ BC,CD,DE$ are $ a,b,c,$ respectively. Compute the distance of $ A$ from the line $ BE$.

2014 ELMO Shortlist, 12

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$. [i]Proposed by David Stoner[/i]

2010 Baltic Way, 2

Let $x$ be a real number such that $0<x<\frac{\pi}{2}$. Prove that \[\cos^2(x)\cot (x)+\sin^2(x)\tan (x)\ge 1\]

2008 Harvard-MIT Mathematics Tournament, 18

Let $ ABC$ be a right triangle with $ \angle A \equal{} 90^\circ$. Let $ D$ be the midpoint of $ AB$ and let $ E$ be a point on segment $ AC$ such that $ AD \equal{} AE$. Let $ BE$ meet $ CD$ at $ F$. If $ \angle BFC \equal{} 135^\circ$, determine $ BC / AB$.

2003 Korea - Final Round, 2

Let $M$ be the intersection of two diagonal, $AC$ and $BD$, of a rhombus $ABCD$, where angle $A<90^\circ$. Construct $O$ on segment $MC$ so that $OB<OC$ and let $t=\frac{MA}{MO}$, provided that $O \neq M$. Construct a circle that has $O$ as centre and goes through $B$ and $D$. Let the intersections between the circle and $AB$ be $B$ and $X$. Let the intersections between the circle and $BC$ be $B$ and $Y$. Let the intersections of $AC$ with $DX$ and $DY$ be $P$ and $Q$, respectively. Express $\frac{OQ}{OP}$ in terms of $t$.

2001 Vietnam Team Selection Test, 2

In the plane let two circles be given which intersect at two points $A, B$; Let $PT$ be one of the two common tangent line of these circles ($P, T$ are points of tangency). Tangents at $P$ and $T$ of the circumcircle of triangle $APT$ meet each other at $S$. Let $H$ be a point symmetric to $B$ under $PT$. Show that $A, S, H$ are collinear.

2010 Contests, 3

Given complex numbers $a,b,c$, we have that $|az^2 + bz +c| \leq 1$ holds true for any complex number $z, |z| \leq 1$. Find the maximum value of $|bc|$.

1979 Chisinau City MO, 176

Indicate all the roots of the equation $x^2+1 = \cos x$.

2010 Indonesia TST, 4

Let $ ABC$ be a non-obtuse triangle with $ CH$ and $ CM$ are the altitude and median, respectively. The angle bisector of $ \angle BAC$ intersects $ CH$ and $ CM$ at $ P$ and $ Q$, respectively. Assume that \[ \angle ABP\equal{}\angle PBQ\equal{}\angle QBC,\] (a) prove that $ ABC$ is a right-angled triangle, and (b) calculate $ \dfrac{BP}{CH}$. [i]Soewono, Bandung[/i]

2022 JHMT HS, 2

The polynomial $P(x)=3x^3-2x^2+ax-b$ has roots $\sin^2\theta$, $\cos^2\theta$, and $\sin\theta\cos\theta$ for some angle $\theta$. Find $P(1)$.

1989 IMO Longlists, 4

The vertex $ A$ of the acute triangle $ ABC$ is equidistant from the circumcenter $ O$ and the orthocenter $ H.$ Determine all possible values for the measure of angle $ A.$

1988 IMO Shortlist, 30

A point $ M$ is chosen on the side $ AC$ of the triangle $ ABC$ in such a way that the radii of the circles inscribed in the triangles $ ABM$ and $ BMC$ are equal. Prove that \[ BM^{2} \equal{} X \cot \left( \frac {B}{2}\right) \] where X is the area of triangle $ ABC.$

2008 Sharygin Geometry Olympiad, 2

(F.Nilov) Given right triangle $ ABC$ with hypothenuse $ AC$ and $ \angle A \equal{} 50^{\circ}$. Points $ K$ and $ L$ on the cathetus $ BC$ are such that $ \angle KAC \equal{} \angle LAB \equal{} 10^{\circ}$. Determine the ratio $ CK/LB$.

2011 Romania Team Selection Test, 1

Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at $E$. The midpoints of $AB$ and $CD$ are $F$ and $G$ respectively, and $\ell$ is the line through $G$ parallel to $AB$. The feet of the perpendiculars from E onto the lines $\ell$ and $CD$ are $H$ and $K$, respectively. Prove that the lines $EF$ and $HK$ are perpendicular.

2011 Graduate School Of Mathematical Sciences, The Master Cource, The University Of Tokyo, 2

Let $f(x,\ y)=\frac{x+y}{(x^2+1)(y^2+1)}.$ (1) Find the maximum value of $f(x,\ y)$ for $0\leq x\leq 1,\ 0\leq y\leq 1.$ (2) Find the maximum value of $f(x,\ y),\ \forall{x,\ y}\in{\mathbb{R}}.$