This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

1996 Polish MO Finals, 1

Find all pairs $(n,r)$ with $n$ a positive integer and $r$ a real such that $2x^2+2x+1$ divides $(x+1)^n - r$.

2003 National Olympiad First Round, 25

Let $ABC$ be an acute triangle and $O$ be its circumcenter. Let $D$ be the midpoint of $[AB]$. The circumcircle of $\triangle ADO$ meets $[AC]$ at $A$ and $E$. If $|AE|=7$, $|DE|=8$, and $m(\widehat{AOD}) = 45^\circ$, what is the area of $\triangle ABC$? $ \textbf{(A)}\ 56\sqrt 3 \qquad\textbf{(B)}\ 56 \sqrt 2 \qquad\textbf{(C)}\ 50 \sqrt 2 \qquad\textbf{(D)}\ 84 \qquad\textbf{(E)}\ \text{None of the preceding} $

2012 ELMO Shortlist, 7

Let $\triangle ABC$ be an acute triangle with circumcenter $O$ such that $AB<AC$, let $Q$ be the intersection of the external bisector of $\angle A$ with $BC$, and let $P$ be a point in the interior of $\triangle ABC$ such that $\triangle BPA$ is similar to $\triangle APC$. Show that $\angle QPA + \angle OQB = 90^{\circ}$. [i]Alex Zhu.[/i]

2014 France Team Selection Test, 2

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

2018 CMIMC Algebra, 7

Compute \[\sum_{k=0}^{2017}\dfrac{5+\cos\left(\frac{\pi k}{1009}\right)}{26+10\cos\left(\frac{\pi k}{1009}\right)}.\]

1956 Poland - Second Round, 5

Tags: trigonometry
Prove that the numbers $ A $, $ B $, $ C $ defined by the formulas $$ A = tg \beta tg \gamma + 5,\\ B = tg \gamma tg \alpha + 5,\\ C = tg \alpha tg \beta + 5,$$ where $ \alpha>0 $, $ \beta > 0 $, $ \gamma > 0 $ and $ \alpha + \beta + \gamma = 90^\circ $, satisfy the inequality $$ \sqrt{A} + \sqrt{B} + \sqrt{C} < 4 \sqrt{3}.$$

2010 Contests, 2

Let $ABCD$ be a convex quadrilateral. Assume line $AB$ and $CD$ intersect at $E$, and $B$ lies between $A$ and $E$. Assume line $AD$ and $BC$ intersect at $F$, and $D$ lies between $A$ and $F$. Assume the circumcircles of $\triangle BEC$ and $\triangle CFD$ intersect at $C$ and $P$. Prove that $\angle BAP=\angle CAD$ if and only if $BD\parallel EF$.

1975 IMO Shortlist, 15

Can there be drawn on a circle of radius $1$ a number of $1975$ distinct points, so that the distance (measured on the chord) between any two points (from the considered points) is a rational number?

2009 Middle European Mathematical Olympiad, 6

Let $ a$, $ b$, $ c$ be real numbers such that for every two of the equations \[ x^2\plus{}ax\plus{}b\equal{}0, \quad x^2\plus{}bx\plus{}c\equal{}0, \quad x^2\plus{}cx\plus{}a\equal{}0\] there is exactly one real number satisfying both of them. Determine all possible values of $ a^2\plus{}b^2\plus{}c^2$.

2007 Today's Calculation Of Integral, 215

For $ a\in\mathbb{R}$, let $ M(a)$ be the maximum value of the function $ f(x)\equal{}\int_{0}^{\pi}\sin (x\minus{}t)\sin (2t\minus{}a)\ dt$. Evaluate $ \int_{0}^{\frac{\pi}{2}}M(a)\sin (2a)\ da$.

2003 China Team Selection Test, 1

Let $g(x)= \sum_{k=1}^{n} a_k \cos{kx}$, $a_1,a_2, \cdots, a_n, x \in R$. If $g(x) \geq -1$ holds for every $x \in R$, prove that $\sum_{k=1}^{n}a_k \leq n$.

2010 Today's Calculation Of Integral, 668

Consider two curves $y=\sin x,\ y=\sin 2x$ in $0\leq x\leq 2\pi$. (1) Let $(\alpha ,\ \beta)\ (0<\alpha <\pi)$ be the intersection point of the curves. If $\sin x-\sin 2x$ has a local minimum at $x=x_1$ and a local maximum at $x=x_2$, then find the values of $\cos x_1,\ \cos x_1\cos x_2$. (2) Find the area enclosed by the curves, then find the volume of the part generated by a rotation of the part of $\alpha \leq x\leq \pi$ for the figure about the line $y=-1$. [i]2011 Kyorin University entrance exam/Medicine [/i]

2009 Unirea, 4

Evaluate the limit: \[ \lim_{n \to \infty}{n \cdot \sin{1} \cdot \sin{2} \cdot \dots \cdot \sin{n}}.\] Proposed to "Unirea" Intercounty contest, grade 11, Romania

2005 QEDMO 1st, 5 (G1)

Let $ABC$ be a triangle, and let $C^{\prime}$ and $A^{\prime}$ be the feet of its altitudes issuing from the vertices $C$ and $A$, respectively. Denote by $P$ the midpoint of the segment $C^{\prime}A^{\prime}$. The circumcircles of triangles $AC^{\prime}P$ and $CA^{\prime}P$ have a common point apart from $P$; denote this common point by $Q$. Prove that: [b](a)[/b] The point $Q$ lies on the circumcircle of the triangle $ABC$. [b](b)[/b] The line $PQ$ passes through the point $B$. [b](c)[/b] We have $\frac{AQ}{CQ}=\frac{AB}{CB}$. Darij

1981 IMO, 1

Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]

1999 Ukraine Team Selection Test, 4

If $n \in N$ and $0 < x <\frac{\pi}{2n}$, prove the inequality $\frac{\sin 2x}{\sin x}+\frac{\sin 3x}{\sin 2x} +...+\frac{\sin (n+1)x}{\sin nx} < 2\frac{\cos x}{\sin^2 x}$. .

2006 IMC, 3

Compare $\tan(\sin x)$ with $\sin(\tan x)$, for $x\in \left]0,\frac{\pi}{2}\right[$.

2020 Jozsef Wildt International Math Competition, W36

For all $x\in\left(0,\frac\pi4\right)$ prove $$\frac{(\sin^2x)^{\sin^2x}+(\tan^2x)^{\tan^2x}}{(\sin^2x)^{\tan^2x}+(\tan^2x)^{\sin^2x}}<\frac{\sin x}{4\sin x-3x}$$ [i]Proposed by Pirkulyiev Rovsen[/i]

2009 Today's Calculation Of Integral, 447

Evaluate $ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x^2}{(1\plus{}x\tan x)(x\minus{}\tan x)\cos ^ 2 x}\ dx.$

1977 AMC 12/AHSME, 16

If $i^2 = -1$, then the sum \[ \cos{45^\circ} + i\cos{135^\circ} + \cdots + i^n\cos{(45 + 90n)^\circ} \] \[ + \cdots + i^{40}\cos{3645^\circ} \] equals \[ \text{(A)}\ \frac{\sqrt{2}}{2} \qquad \text{(B)}\ -10i\sqrt{2} \qquad \text{(C)}\ \frac{21\sqrt{2}}{2} \] \[ \text{(D)}\ \frac{\sqrt{2}}{2}(21 - 20i) \qquad \text{(E)}\ \frac{\sqrt{2}}{2}(21 + 20i) \]

2014 Online Math Open Problems, 26

Let $ABC$ be a triangle with $AB=26$, $AC=28$, $BC=30$. Let $X$, $Y$, $Z$ be the midpoints of arcs $BC$, $CA$, $AB$ (not containing the opposite vertices) respectively on the circumcircle of $ABC$. Let $P$ be the midpoint of arc $BC$ containing point $A$. Suppose lines $BP$ and $XZ$ meet at $M$ , while lines $CP$ and $XY$ meet at $N$. Find the square of the distance from $X$ to $MN$. [i]Proposed by Michael Kural[/i]

1970 Czech and Slovak Olympiad III A, 6

Determine all real $x$ such that \[\sqrt{\tan(x)-1}\,\Bigl(\log_{\tan(x)}\bigl(2+4\cos^2(x)-2\bigr)\Bigr)\ge0.\]

1987 IberoAmerican, 2

In a triangle $ABC$, $M$ and $N$ are the respective midpoints of the sides $AC$ and $AB$, and $P$ is the point of intersection of $BM$ and $CN$. Prove that, if it is possible to inscribe a circle in the quadrilateral $AMPN$, then the triangle $ABC$ is isosceles.

2008 Romania National Olympiad, 1

Let $ ABC$ be an acute angled triangle with $ \angle B > \angle C$. Let $ D$ be the foot of the altitude from $ A$ on $ BC$, and let $ E$ be the foot of the perpendicular from $ D$ on $ AC$. Let $ F$ be a point on the segment $ (DE)$. Show that the lines $ AF$ and $ BF$ are perpendicular if and only if $ EF\cdot DC \equal{} BD \cdot DE$.

2012 APMO, 4

Let $ ABC $ be an acute triangle. Denote by $ D $ the foot of the perpendicular line drawn from the point $ A $ to the side $ BC $, by $M$ the midpoint of $ BC $, and by $ H $ the orthocenter of $ ABC $. Let $ E $ be the point of intersection of the circumcircle $ \Gamma $ of the triangle $ ABC $ and the half line $ MH $, and $ F $ be the point of intersection (other than $E$) of the line $ ED $ and the circle $ \Gamma $. Prove that $ \tfrac{BF}{CF} = \tfrac{AB}{AC} $ must hold. (Here we denote $XY$ the length of the line segment $XY$.)