This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2009 Today's Calculation Of Integral, 515

Find the maximum and minimum values of $ \int_0^{\pi} (a\sin x \plus{} b\cos x)^3dx$ for $ |a|\leq 1,\ |b|\leq 1$. Note that you are not allowed to solve in using partial differentiation here.

2009 Hong Kong TST, 1

Let $ \theta_1, \theta_2,\ldots , \theta_{2008}$ be real numbers. Find the maximum value of $ \sin\theta_1\cos\theta_2 \plus{} \sin\theta_2\cos\theta_3 \plus{} \ldots \plus{} \sin\theta_{2007}\cos\theta_{2008} \plus{} \sin\theta_{2008}\cos\theta_1$

2005 Serbia Team Selection Test, 4

Let $T$ be the centroid of triangle $ABC$. Prove that \[ \frac 1{\sin \angle TAC} + \frac 1{\sin \angle TBC} \geq 4 \]

2012 India Regional Mathematical Olympiad, 5

Let $ABC$ be a triangle. Let $D,E$ be points on the segment $BC$ such that $BD=DE=EC$. Let $F$ be the mid-point of $AC$. Let $BF$ intersect $AD$ in $P$ and $AE$ in $Q$ respectively. Determine the ratio of the area of the triangle $APQ$ to that of the quadrilateral $PDEQ$.

1991 Arnold's Trivium, 76

Investigate the behaviour at $t\to\infty$ of the solution of the problem \[u_t+(u\sin x)_x=\epsilon u_{xx},\;u|_{t=0}=1,\;\epsilon\ll1\]

1977 IMO, 1

Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$

Today's calculation of integrals, 880

For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows. (1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$. (2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$ (3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.

2009 Germany Team Selection Test, 2

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

2024 JHMT HS, 7

Compute the sum of all real solutions $\alpha$ (in radians) to the equation \[ |\sin\alpha|=\left\lfloor \frac{\alpha}{20} \right\rfloor. \]

2025 NCMO, 5

Let $x$ be a real number. Suppose that there exist integers $a_0,a_1,\dots,a_n$, not all zero, such that \[\sum_{k=0}^n a_k\cos(kx)=\sum_{k=0}^na_k\sin(kx)=0.\] Characterize all possible values of $\cos x$. [i]Grisham Paimagam[/i]

2012 Germany Team Selection Test, 2

Let $ABC$ be an acute triangle. Let $\omega$ be a circle whose centre $L$ lies on the side $BC$. Suppose that $\omega$ is tangent to $AB$ at $B'$ and $AC$ at $C'$. Suppose also that the circumcentre $O$ of triangle $ABC$ lies on the shorter arc $B'C'$ of $\omega$. Prove that the circumcircle of $ABC$ and $\omega$ meet at two points. [i]Proposed by Härmel Nestra, Estonia[/i]

2008 IMC, 2

Two different ellipses are given. One focus of the first ellipse coincides with one focus of the second ellipse. Prove that the ellipses have at most two points in common.

1967 IMO Longlists, 21

Without using tables, find the exact value of the product: \[P = \prod^7_{k=1} \cos \left(\frac{k \pi}{15} \right).\]

1903 Eotvos Mathematical Competition, 2

For a given pair of values $x$ and $y$ satisfying $x = \sin \alpha , y = \sin \beta$ , there can be four different values of $z = \sin( \alpha +\beta )$. (a) Set up a relation between $x, y$ and $z$ not involving trigonometric functions or radicals. (b) Find those pairs of values $(x, y)$ for which $z = \sin (\alpha +\beta )$ takes on fewer than four distinct values.

1981 IMO Shortlist, 15

Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]

2013 Stanford Mathematics Tournament, 19

A triangle with side lengths $2$ and $3$ has an area of $3$. Compute the third side length of the triangle.

2012 Romanian Master of Mathematics, 2

Given a non-isosceles triangle $ABC$, let $D,E$, and $F$ denote the midpoints of the sides $BC,CA$, and $AB$ respectively. The circle $BCF$ and the line $BE$ meet again at $P$, and the circle $ABE$ and the line $AD$ meet again at $Q$. Finally, the lines $DP$ and $FQ$ meet at $R$. Prove that the centroid $G$ of the triangle $ABC$ lies on the circle $PQR$. [i](United Kingdom) David Monk[/i]

2008 Serbia National Math Olympiad, 6

In a convex pentagon $ ABCDE$, let $ \angle EAB \equal{} \angle ABC \equal{} 120^{\circ}$, $ \angle ADB \equal{} 30^{\circ}$ and $ \angle CDE \equal{} 60^{\circ}$. Let $ AB \equal{} 1$. Prove that the area of the pentagon is less than $ \sqrt {3}$.

2010 Today's Calculation Of Integral, 557

Find the folllowing limit. \[ \lim_{n\to\infty} \frac{(2n\plus{}1)\int_0^1 x^{n\minus{}1}\sin \left(\frac{\pi}{2}x\right)dx}{(n\plus{}1)^2\int_0^1 x^{n\minus{}1}\cos \left(\frac{\pi}{2}x\right)dx}\ \ (n\equal{}1,\ 2,\ \cdots).\]

PEN I Problems, 19

Let $a, b, c$, and $d$ be real numbers. Suppose that $\lfloor na\rfloor +\lfloor nb\rfloor =\lfloor nc\rfloor +\lfloor nd\rfloor $ for all positive integers $n$. Show that at least one of $a+b$, $a-c$, $a-d$ is an integer.

2006 Hong Kong TST., 3

In triangle ABC, the altitude, angle bisector and median from C divide the angle C into four equal angles. Find angle B.

2005 National Olympiad First Round, 7

What is the greatest value of $\sin x \cos y + \sin y \cos z + \sin z \cos x$, where $x,y,z$ are real numbers? $ \textbf{(A)}\ \sqrt 2 \qquad\textbf{(B)}\ \dfrac 32 \qquad\textbf{(C)}\ \dfrac {\sqrt 3}2 \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ 3 $

2014 All-Russian Olympiad, 1

Does there exist positive $a\in\mathbb{R}$, such that \[|\cos x|+|\cos ax| >\sin x +\sin ax \] for all $x\in\mathbb{R}$? [i]N. Agakhanov[/i]

2014 Bulgaria National Olympiad, 1

Let $k$ be a given circle and $A$ is a fixed point outside $k$. $BC$ is a diameter of $k$. Find the locus of the orthocentre of $\triangle ABC$ when $BC$ varies. [i]Proposed by T. Vitanov, E. Kolev[/i]

2004 Croatia National Olympiad, Problem 4

Determine all real numbers $\alpha$ with the property that all numbers in the sequence $\cos\alpha,\cos2\alpha,\cos2^2\alpha,\ldots,\cos2^n\alpha,\ldots$ are negative.