This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2004 Regional Olympiad - Republic of Srpska, 2

Let $0<x<\pi/2$. Prove the inequality \[\sin x>\frac{4x}{x^2+4} .\]

2008 AMC 12/AHSME, 20

Triangle $ ABC$ has $ AC\equal{}3$, $ BC\equal{}4$, and $ AB\equal{}5$. Point $ D$ is on $ \overline{AB}$, and $ \overline{CD}$ bisects the right angle. The inscribed circles of $ \triangle ADC$ and $ \triangle BCD$ have radii $ r_a$ and $ r_b$, respectively. What is $ r_a/r_b$? $ \textbf{(A)}\ \frac{1}{28}\left(10\minus{}\sqrt{2}\right) \qquad \textbf{(B)}\ \frac{3}{56}\left(10\minus{}\sqrt{2}\right) \qquad \textbf{(C)}\ \frac{1}{14}\left(10\minus{}\sqrt{2}\right) \qquad \textbf{(D)}\ \frac{5}{56}\left(10\minus{}\sqrt{2}\right) \\ \textbf{(E)}\ \frac{3}{28}\left(10\minus{}\sqrt{2}\right)$

2011 Mediterranean Mathematics Olympiad, 4

Let $D$ be the foot of the internal bisector of the angle $\angle A$ of the triangle $ABC$. The straight line which joins the incenters of the triangles $ABD$ and $ACD$ cut $AB$ and $AC$ at $M$ and $N$, respectively. Show that $BN$ and $CM$ meet on the bisector $AD$.

1970 Poland - Second Round, 1

Prove that $$ |\cos n\beta - \cos n\alpha| \leq n^2 |\cos \beta - \cos\alpha|,$$ where $n$ is a natural number . Check for what values of $ n $, $ \alpha $, $ \beta $ equality holds.

2005 Today's Calculation Of Integral, 27

Let $f(x)=t\sin x+(1-t)\cos x\ (0\leqq t\leqq 1)$. Find the maximum and minimum value of the following $P(t)$. \[P(t)=\left\{\int_0^{\frac{\pi}{2}} e^x f(x) dx \right\}\left\{\int_0^{\frac{\pi}{2}} e^{-x} f(x)dx \right\}\]

2012 Romania Team Selection Test, 2

Let $ABCD$ be a convex circumscribed quadrilateral such that $\angle ABC+\angle ADC<180^{\circ}$ and $\angle ABD+\angle ACB=\angle ACD+\angle ADB$. Prove that one of the diagonals of quadrilateral $ABCD$ passes through the other diagonals midpoint.

2010 USAJMO, 6

Let $ABC$ be a triangle with $\angle A = 90^{\circ}$. Points $D$ and $E$ lie on sides $AC$ and $AB$, respectively, such that $\angle ABD = \angle DBC$ and $\angle ACE = \angle ECB$. Segments $BD$ and $CE$ meet at $I$. Determine whether or not it is possible for segments $AB$, $AC$, $BI$, $ID$, $CI$, $IE$ to all have integer lengths.

2005 Georgia Team Selection Test, 5

Let $ ABCD$ be a convex quadrilateral. Points $ P,Q$ and $ R$ are the feets of the perpendiculars from point $ D$ to lines $ BC, CA$ and $ AB$, respectively. Prove that $ PQ\equal{}QR$ if and only if the bisectors of the angles $ ABC$ and $ ADC$ meet on segment $ AC$.

2010 IMC, 1

[list] $(a)$ A sequence $x_1,x_2,\dots$ of real numbers satisfies \[x_{n+1}=x_n \cos x_n \textrm{ for all } n\geq 1.\] Does it follows that this sequence converges for all initial values $x_1?$ (5 points) $(b)$ A sequence $y_1,y_2,\dots$ of real numbers satisfies \[y_{n+1}=y_n \sin y_n \textrm{ for all } n\geq 1.\] Does it follows that this sequence converges for all initial values $y_1?$ (5 points)[/list]

2008 Harvard-MIT Mathematics Tournament, 24

Suppose that $ ABC$ is an isosceles triangle with $ AB \equal{} AC$. Let $ P$ be the point on side $ AC$ so that $ AP \equal{} 2CP$. Given that $ BP \equal{} 1$, determine the maximum possible area of $ ABC$.

1978 IMO Longlists, 44

In $ABC$ with $\angle C = 60^{\circ}$, prove that \[\frac{c}{a} + \frac{c}{b} \ge2.\]

2005 France Team Selection Test, 5

Let $ABC$ be a triangle such that $BC=AC+\frac{1}{2}AB$. Let $P$ be a point of $AB$ such that $AP=3PB$. Show that $\widehat{PAC} = 2 \widehat{CPA}.$

2008 AIME Problems, 14

Let $ \overline{AB}$ be a diameter of circle $ \omega$. Extend $ \overline{AB}$ through $ A$ to $ C$. Point $ T$ lies on $ \omega$ so that line $ CT$ is tangent to $ \omega$. Point $ P$ is the foot of the perpendicular from $ A$ to line $ CT$. Suppose $ AB \equal{} 18$, and let $ m$ denote the maximum possible length of segment $ BP$. Find $ m^{2}$.

2004 Romania Team Selection Test, 11

Let $I$ be the incenter of the non-isosceles triangle $ABC$ and let $A',B',C'$ be the tangency points of the incircle with the sides $BC,CA,AB$ respectively. The lines $AA'$ and $BB'$ intersect in $P$, the lines $AC$ and $A'C'$ in $M$ and the lines $B'C'$ and $BC$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular. [i]Alternative formulation.[/i] The incircle of a non-isosceles triangle $ABC$ has center $I$ and touches the sides $BC$, $CA$ and $AB$ in $A^{\prime}$, $B^{\prime}$ and $C^{\prime}$, respectively. The lines $AA^{\prime}$ and $BB^{\prime}$ intersect in $P$, the lines $AC$ and $A^{\prime}C^{\prime}$ intersect in $M$, and the lines $BC$ and $B^{\prime}C^{\prime}$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular.

2012 India IMO Training Camp, 1

A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.

2013 Online Math Open Problems, 21

Let $ABC$ be a triangle with $AB = 5$, $AC = 8$, and $BC = 7$. Let $D$ be on side $AC$ such that $AD = 5$ and $CD = 3$. Let $I$ be the incenter of triangle $ABC$ and $E$ be the intersection of the perpendicular bisectors of $\overline{ID}$ and $\overline{BC}$. Suppose $DE = \frac{a\sqrt{b}}{c}$ where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. Find $a+b+c$. [i]Proposed by Ray Li[/i]

1989 AIME Problems, 12

Let $ABCD$ be a tetrahedron with $AB=41$, $AC=7$, $AD=18$, $BC=36$, $BD=27$, and $CD=13$, as shown in the figure. Let $d$ be the distance between the midpoints of edges $AB$ and $CD$. Find $d^{2}$. [asy] pair C=origin, D=(4,11), A=(8,-5), B=(16,0); draw(A--B--C--D--B^^D--A--C); draw(midpoint(A--B)--midpoint(C--D), dashed); label("27", B--D, NE); label("41", A--B, SE); label("7", A--C, SW); label("$d$", midpoint(A--B)--midpoint(C--D), NE); label("18", (7,8), SW); label("13", (3,9), SW); pair point=(7,0); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D));[/asy]

2009 Rioplatense Mathematical Olympiad, Level 3, 2

Let $A$, $B$, $C$, $D$, $E$, $F$, $G$, $H$, $I$ be nine points in space such that $ABCDE$, $ABFGH$, and $GFCDI$ are each regular pentagons with side length $1$. Determine the lengths of the sides of triangle $EHI$.

2019 Harvard-MIT Mathematics Tournament, 3

For any angle $0 < \theta < \pi/2$, show that \[0 < \sin \theta + \cos \theta + \tan \theta + \cot \theta - \sec \theta - \csc \theta < 1.\]

2017 CCA Math Bonanza, I10

Tags: trigonometry
Find the sum of the two smallest possible values of $x^\circ$ (in degrees) that satisfy the following equation if $x$ is greater than $2017^\circ$: $$\cos^59x+\cos^5x=32\cos^55x\cos^54x+5\cos^29x\cos^2x\left(\cos9x+\cos x\right).$$ [i]2017 CCA Math Bonanza Individual Round #10[/i]

2005 All-Russian Olympiad, 4

$w_B$ and $w_C$ are excircles of a triangle $ABC$. The circle $w_B'$ is symmetric to $w_B$ with respect to the midpoint of $AC$, the circle $w_C'$ is symmetric to $w_C$ with respect to the midpoint of $AB$. Prove that the radical axis of $w_B'$ and $w_C'$ halves the perimeter of $ABC$.

2011 USA TSTST, 7

Let $ABC$ be a triangle. Its excircles touch sides $BC, CA, AB$ at $D, E, F$, respectively. Prove that the perimeter of triangle $ABC$ is at most twice that of triangle $DEF$.

2020-2021 OMMC, 9

Tags: trig , trigonometry
The difference between the maximum and minimum values of $$2\cos 2x +7\sin x$$ over the real numbers equals $\frac{p}{q}$ for relatively prime positive integers $p, q.$ Find $p+q.$

2011 Northern Summer Camp Of Mathematics, 1

Solve the system of equations \[(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=1,\]\[y+\frac{y}{\sqrt{x^2-1}}+\frac{35}{12}=0.\]

2011 Postal Coaching, 5

Let $P$ be a point inside a triangle $ABC$ such that \[\angle P AB = \angle P BC = \angle P CA\] Suppose $AP, BP, CP$ meet the circumcircles of triangles $P BC, P CA, P AB$ at $X, Y, Z$ respectively $(\neq P)$ . Prove that \[[XBC] + [Y CA] + [ZAB] \ge 3[ABC]\]