This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

1967 IMO Shortlist, 1

Decompose the expression into real factors: \[E = 1 - \sin^5(x) - \cos^5(x).\]

1969 IMO, 2

Let $f(x)=\cos(a_1+x)+{1\over2}\cos(a_2+x)+{1\over4}\cos(a_3+x)+\ldots+{1\over2^{n-1}}\cos(a_n+x)$, where $a_i$ are real constants and $x$ is a real variable. If $f(x_1)=f(x_2)=0$, prove that $x_1-x_2$ is a multiple of $\pi$.

2002 AMC 12/AHSME, 24

A convex quadrilateral $ ABCD$ with area $ 2002$ contains a point $ P$ in its interior such that $ PA \equal{} 24$, $ PB \equal{} 32$, $ PC \equal{} 28$, and $ PD \equal{} 45$. FInd the perimeter of $ ABCD$. $ \textbf{(A)}\ 4\sqrt {2002}\qquad \textbf{(B)}\ 2\sqrt {8465}\qquad \textbf{(C)}\ 2\left(48 \plus{} \sqrt {2002}\right)$ $ \textbf{(D)}\ 2\sqrt {8633}\qquad \textbf{(E)}\ 4\left(36 \plus{} \sqrt {113}\right)$

2011 Balkan MO, 4

Let $ABCDEF$ be a convex hexagon of area $1$, whose opposite sides are parallel. The lines $AB$, $CD$ and $EF$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $BC$, $DE$ and $FA$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.

VI Soros Olympiad 1999 - 2000 (Russia), 10.9

Prove that for any $\lambda > 3$ there is a number $x$ for which $$\sin x + \sin (\lambda x) \ge 1.8.$$

2003 AMC 12-AHSME, 17

Square $ ABCD$ has sides of length $ 4$, and $ M$ is the midpoint of $ \overline{CD}$. A circle with radius $ 2$ and center $ M$ intersects a circle with raidus $ 4$ and center $ A$ at points $ P$ and $ D$. What is the distance from $ P$ to $ \overline{AD}$? [asy]unitsize(8mm); defaultpen(linewidth(.8pt)); dotfactor=4; draw(Circle((2,0),2)); draw(Circle((0,4),4)); clip(scale(4)*unitsquare); draw(scale(4)*unitsquare); filldraw(Circle((2,0),0.07)); filldraw(Circle((3.2,1.6),0.07)); label("$A$",(0,4),NW); label("$B$",(4,4),NE); label("$C$",(4,0),SE); label("$D$",(0,0),SW); label("$M$",(2,0),S); label("$P$",(3.2,1.6),N);[/asy]$ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac {16}{5} \qquad \textbf{(C)}\ \frac {13}{4} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {7}{2}$

1982 All Soviet Union Mathematical Olympiad, 334

Given a point $M$ inside a right tetrahedron. Prove that at least one tetrahedron edge is seen from the $M$ in an angle, that has a cosine not greater than $-1/3$. (e.g. if $A$ and $B$ are the vertices, corresponding to that edge, $cos(\widehat{AMB}) \le -1/3$)

1999 IMO Shortlist, 4

For a triangle $T = ABC$ we take the point $X$ on the side $(AB)$ such that $AX/AB=4/5$, the point $Y$ on the segment $(CX)$ such that $CY = 2YX$ and, if possible, the point $Z$ on the ray ($CA$ such that $\widehat{CXZ} = 180 - \widehat{ABC}$. We denote by $\Sigma$ the set of all triangles $T$ for which $\widehat{XYZ} = 45$. Prove that all triangles from $\Sigma$ are similar and find the measure of their smallest angle.

2012 Online Math Open Problems, 8

In triangle $ABC$ let $D$ be the foot of the altitude from $A$. Suppose that $AD = 4$, $BD = 3$, $CD = 2$, and $AB$ is extended past $B$ to a point $E$ such that $BE = 5$. Determine the value of $CE^2$. [i]Ray Li.[/i] [hide="Clarifications"][list=1][*]Triangle $ABC$ is acute.[/list][/hide]

2005 Postal Coaching, 10

On the sides $AB$ and $BC$ of triangle $ABC$, points $K$ and $M$ are chosen such that the quadrilaterals $AKMC$ and $KBMN$ are cyclic , where $N = AM \cap CK$ . If these quads have the same circumradii, find $\angle ABC$

1999 Harvard-MIT Mathematics Tournament, 3

Find \[\int_{-4\pi\sqrt{2}}^{4\pi\sqrt{2}}\left(\dfrac{\sin x}{1+x^4}+1\right)dx.\]

2004 Germany Team Selection Test, 3

Given six real numbers $a$, $b$, $c$, $x$, $y$, $z$ such that $0 < b-c < a < b+c$ and $ax + by + cz = 0$. What is the sign of the sum $ayz + bzx + cxy$ ?

2011 Kosovo National Mathematical Olympiad, 4

Let $ a$, $ b$, $ c$ be the sides of a triangle, and $ S$ its area. Prove: \[ a^{2} \plus{} b^{2} \plus{} c^{2}\geq 4S \sqrt {3} \] In what case does equality hold?

1958 AMC 12/AHSME, 38

Let $ r$ be the distance from the origion to a point $ P$ with coordinates $ x$ and $ y$. Designate the ratio $ \frac{y}{r}$ by $ s$ and the ratio $ \frac{x}{r}$ by $ c$. Then the values of $ s^2 \minus{} c^2$ are limited to the numbers: $ \textbf{(A)}\ \text{less than }{\minus{}1}\text{ are greater than }{\plus{}1}\text{, both excluded}\qquad\\ \textbf{(B)}\ \text{less than }{\minus{}1}\text{ are greater than }{\plus{}1}\text{, both included}\qquad \\ \textbf{(C)}\ \text{between }{\minus{}1}\text{ and }{\plus{}1}\text{, both excluded}\qquad \\ \textbf{(D)}\ \text{between }{\minus{}1}\text{ and }{\plus{}1}\text{, both included}\qquad \\ \textbf{(E)}\ {\minus{}1}\text{ and }{\plus{}1}\text{ only}$

1983 IMO Longlists, 65

Let $ABCD$ be a convex quadrilateral whose diagonals $AC$ and $BD$ intersect in a point $P$. Prove that \[\frac{AP}{PC}=\frac{\cot \angle BAC + \cot \angle DAC}{\cot \angle BCA + \cot \angle DCA}\]

2023 Romanian Master of Mathematics Shortlist, G1

Let $ABC$ be a triangle with incentre $I$ and circumcircle $\omega$. The incircle of the triangle $ABC$ touches the sides $BC$, $CA$ and $AB$ at $D$, $E$ and $F$, respectively. The circumcircle of triangle $ADI$ crosses $\omega$ again at $P$, and the lines $PE$ and $PF$ cross $\omega$ again at $X$and $Y$, respectively. Prove that the lines $AI$, $BX$ and $CY$ are concurrent.

2012 Today's Calculation Of Integral, 828

Find a function $f(x)$, which is differentiable and $f'(x) $ is continuous, such that $\int_0^x f(t)\cos (x-t)\ dt=xe^{2x}.$

PEN E Problems, 41

Show that $n$ is prime iff $\lim_{r \rightarrow\infty}\,\lim_{s \rightarrow\infty}\,\lim_{t \rightarrow \infty}\,\sum_{u=0}^{s}\left(1-\left(\cos\,\frac{(u!)^{r} \pi}{n} \right)^{2t} \right)=n$ PS : I posted it because it's in the PDF file but not here ...

1992 IberoAmerican, 2

Given a circle $\Gamma$ and the positive numbers $h$ and $m$, construct with straight edge and compass a trapezoid inscribed in $\Gamma$, such that it has altitude $h$ and the sum of its parallel sides is $m$.

2014 Contests, 1

In a non-obtuse triangle $ABC$, prove that \[ \frac{\sin A \sin B}{\sin C} + \frac{\sin B \sin C}{\sin A} + \frac{\sin C \sin A}{ \sin B} \ge \frac 52. \][i]Proposed by Ryan Alweiss[/i]

1958 Czech and Slovak Olympiad III A, 3

Find all real $x$ such that $$\sqrt{2+\frac{5}{2}\cos x}\leq\sin x.$$

2012 IMC, 4

Let $n \ge 2$ be an integer. Find all real numbers $a$ such that there exist real numbers $x_1,x_2,\dots,x_n$ satisfying \[x_1(1-x_2)=x_2(1-x_3)=\dots=x_n(1-x_1)=a.\] [i]Proposed by Walther Janous and Gerhard Kirchner, Innsbruck.[/i]

2014 Taiwan TST Round 1, 1

Let $O_1$, $O_2$ be two circles with radii $R_1$ and $R_2$, and suppose the circles meet at $A$ and $D$. Draw a line $L$ through $D$ intersecting $O_1$, $O_2$ at $B$ and $C$. Now allow the distance between the centers as well as the choice of $L$ to vary. Find the length of $AD$ when the area of $ABC$ is maximized.

1939 Moscow Mathematical Olympiad, 044

Prove that $cos \frac{2\pi}{5} +cos \frac{4\pi}{5} = -\frac{1}{2}$.

2011 Today's Calculation Of Integral, 693

Evaluate $\int_0^{\pi} \sqrt[4]{1+|\cos x|}\ dx.$ created by kunny