This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

1976 IMO, 1

In a convex quadrilateral (in the plane) with the area of $32 \text{ cm}^{2}$ the sum of two opposite sides and a diagonal is $16 \text{ cm}$. Determine all the possible values that the other diagonal can have.

1992 Czech And Slovak Olympiad IIIA, 4

Solve the equation $\cos 12x = 5\sin 3x+9\ tan ^2x+\ cot ^2x$

2007 Canada National Olympiad, 4

For two real numbers $ a$, $ b$, with $ ab\neq 1$, define the $ \ast$ operation by \[ a\ast b=\frac{a+b-2ab}{1-ab}.\] Start with a list of $ n\geq 2$ real numbers whose entries $ x$ all satisfy $ 0<x<1$. Select any two numbers $ a$ and $ b$ in the list; remove them and put the number $ a\ast b$ at the end of the list, thereby reducing its length by one. Repeat this procedure until a single number remains. $ a.$ Prove that this single number is the same regardless of the choice of pair at each stage. $ b.$ Suppose that the condition on the numbers $ x$ is weakened to $ 0<x\leq 1$. What happens if the list contains exactly one $ 1$?

2010 Today's Calculation Of Integral, 620

Let $a,\ b$ be real numbers. Suppose that a function $f(x)$ satisfies $f(x)=a\sin x+b\cos x+\int_{-\pi}^{\pi} f(t)\cos t\ dt$ and has the maximum value $2\pi$ for $-\pi \leq x\leq \pi$. Find the minimum value of $\int_{-\pi}^{\pi} \{f(x)\}^2dx.$ [i]2010 Chiba University entrance exam[/i]

2005 National High School Mathematics League, 9

Tags: trigonometry
If $0<\alpha<\beta<\gamma<2\pi$, for all $x\in\mathbb{R}$, $\cos(x+\alpha)+\cos(x+\beta)+\cos(x+\gamma)=0$, then $\gamma-\alpha=$________.

2005 Baltic Way, 12

Let $ABCD$ be a convex quadrilateral such that $BC=AD$. Let $M$ and $N$ be the midpoints of $AB$ and $CD$, respectively. The lines $AD$ and $BC$ meet the line $MN$ at $P$ and $Q$, respectively. Prove that $CQ=DP$.

1992 Cono Sur Olympiad, 2

In a $\triangle {ABC}$, consider a point $E$ in $BC$ such that $AE \perp BC$. Prove that $AE=\frac{bc}{2r}$, where $r$ is the radio of the circle circumscripte, $b=AC$ and $c=AB$.

2010 Estonia Team Selection Test, 3

Let the angles of a triangle be $\alpha, \beta$, and $\gamma$, the perimeter $2p$ and the radius of the circumcircle $R$. Prove the inequality $\cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma \ge 3 \left(\frac{9R^2}{p^2}-1\right)$. When is the equality achieved?

2012 Tuymaada Olympiad, 2

Quadrilateral $ABCD$ is both cyclic and circumscribed. Its incircle touches its sides $AB$ and $CD$ at points $X$ and $Y$, respectively. The perpendiculars to $AB$ and $CD$ drawn at $A$ and $D$, respectively, meet at point $U$; those drawn at $X$ and $Y$ meet at point $V$, and finally, those drawn at $B$ and $C$ meet at point $W$. Prove that points $U$, $V$ and $W$ are collinear. [i]Proposed by A. Golovanov[/i]

1996 Turkey Team Selection Test, 2

In a parallelogram $ABCD$ with $\angle A < 90$, the circle with diameter $AC$ intersects the lines $CB$ and $CD$ again at $E$ and $F$ , and the tangent to this circle at $A$ meets the line $BD$ at $P$ . Prove that the points $P$, $E$, $F$ are collinear.

2008 Harvard-MIT Mathematics Tournament, 27

Cyclic pentagon $ ABCDE$ has a right angle $ \angle{ABC} \equal{} 90^{\circ}$ and side lengths $ AB \equal{} 15$ and $ BC \equal{} 20$. Supposing that $ AB \equal{} DE \equal{} EA$, find $ CD$.

1979 IMO Longlists, 74

Given an equilateral triangle $ABC$ of side $a$ in a plane, let $M$ be a point on the circumcircle of the triangle. Prove that the sum $s = MA^4 +MB^4 +MC^4$ is independent of the position of the point $M$ on the circle, and determine that constant value as a function of $a$.

1995 AMC 12/AHSME, 12

Hi guys, I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this: 1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though. 2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary. 3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions: A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh? B. Do NOT go back to the previous problem(s). This causes too much confusion. C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for. 4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving! Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D

1979 AMC 12/AHSME, 20

Tags: trigonometry
If $a=\tfrac{1}{2}$ and $(a+1)(b+1)=2$ then the radian measure of $\arctan a + \arctan b$ equals $\textbf{(A) }\frac{\pi}{2}\qquad\textbf{(B) }\frac{\pi}{3}\qquad\textbf{(C) }\frac{\pi}{4}\qquad\textbf{(D) }\frac{\pi}{5}\qquad\textbf{(E) }\frac{\pi}{6}$

2012 Romanian Masters In Mathematics, 2

Given a non-isosceles triangle $ABC$, let $D,E$, and $F$ denote the midpoints of the sides $BC,CA$, and $AB$ respectively. The circle $BCF$ and the line $BE$ meet again at $P$, and the circle $ABE$ and the line $AD$ meet again at $Q$. Finally, the lines $DP$ and $FQ$ meet at $R$. Prove that the centroid $G$ of the triangle $ABC$ lies on the circle $PQR$. [i](United Kingdom) David Monk[/i]

2007 Estonia Math Open Senior Contests, 10

Consider triangles whose each side length squared is a rational number. Is it true that (a) the square of the circumradius of every such triangle is rational; (b) the square of the inradius of every such triangle is rational?

2019 Purple Comet Problems, 15

Tags: trigonometry
Suppose $a$ is a real number such that $\sin(\pi \cdot \cos a) = \cos(\pi \cdot \sin a)$. Evaluate $35 \sin^2(2a) + 84 \cos^2(4a)$.

1999 Korea - Final Round, 1

We are given two triangles. Prove, that if $\angle{C}=\angle{C'}$ and $\frac{R}{r}=\frac{R'}{r'}$, then they are similar.

1994 IMO, 2

Let $ ABC$ be an isosceles triangle with $ AB \equal{} AC$. $ M$ is the midpoint of $ BC$ and $ O$ is the point on the line $ AM$ such that $ OB$ is perpendicular to $ AB$. $ Q$ is an arbitrary point on $ BC$ different from $ B$ and $ C$. $ E$ lies on the line $ AB$ and $ F$ lies on the line $ AC$ such that $ E, Q, F$ are distinct and collinear. Prove that $ OQ$ is perpendicular to $ EF$ if and only if $ QE \equal{} QF$.

1953 Moscow Mathematical Olympiad, 239

On the plane find the locus of points whose coordinates satisfy $sin(x + y) = 0$.

2021 India National Olympiad, 5

In a convex quadrilateral $ABCD$, $\angle ABD=30^\circ$, $\angle BCA=75^\circ$, $\angle ACD=25^\circ$ and $CD=CB$. Extend $CB$ to meet the circumcircle of triangle $DAC$ at $E$. Prove that $CE=BD$. [i]Proposed by BJ Venkatachala[/i]

2000 Dutch Mathematical Olympiad, 4

Fifteen boys are standing on a field, and each of them has a ball. No two distances between two of the boys are equal. Each boy throws his ball to the boy standing closest to him. (a) Show that one of the boys does not get any ball. (b) Prove that none of the boys gets more than five balls.

1991 Baltic Way, 7

If $\alpha,\beta,\gamma$ are the angles of an acute-angled triangle, prove that \[\sin \alpha + \sin \beta > \cos \alpha + \cos\beta + \cos\gamma.\]

1993 China Team Selection Test, 3

Let $ABC$ be a triangle and its bisector at $A$ cuts its circumcircle at $D.$ Let $I$ be the incenter of triangle $ABC,$ $M$ be the midpoint of $BC,$ $P$ is the symmetric to $I$ with respect to $M$ (Assuming $P$ is in the circumcircle). Extend $DP$ until it cuts the circumcircle again at $N.$ Prove that among segments $AN, BN, CN$, there is a segment that is the sum of the other two.

2008 Baltic Way, 3

Does there exist an angle $ \alpha\in(0,\pi/2)$ such that $ \sin\alpha$, $ \cos\alpha$, $ \tan\alpha$ and $ \cot\alpha$, taken in some order, are consecutive terms of an arithmetic progression?