Found problems: 3349
2006 India National Olympiad, 5
In a cyclic quadrilateral $ABCD$, $AB=a$, $BC=b$, $CD=c$, $\angle ABC = 120^\circ$ and $\angle ABD = 30^\circ$. Prove that
(1) $c \ge a + b$;
(2) $|\sqrt{c + a} - \sqrt{c + b} | = \sqrt{c - a - b}$.
2001 India Regional Mathematical Olympiad, 5
In a triangle $ABC$, $D$ is a point on $BC$ such that $AD$ is the internal bisector of $\angle A$. Suppose $\angle B = 2 \angle C$ and $CD =AB$. prove that $\angle A = 72^{\circ}$.
1984 Vietnam National Olympiad, 2
The sequence $(u_n)$ is defined by $u_1 = 1, u_2 = 2$ and $u_{n+1} = 3u_n - u_{n-1}$ for $n \ge 2$. Set $v_n =\sum_{k=1}^n \text{arccot }u_k$. Compute $\lim_{n\to\infty} v_n$.
2019 AIME Problems, 13
Triangle $ABC$ has side lengths $AB=4$, $BC=5$, and $CA=6$. Points $D$ and $E$ are on ray $AB$ with $AB<AD<AE$. The point $F \neq C$ is a point of intersection of the circumcircles of $\triangle ACD$ and $\triangle EBC$ satisfying $DF=2$ and $EF=7$. Then $BE$ can be expressed as $\tfrac{a+b\sqrt{c}}{d}$, where $a$, $b$, $c$, and $d$ are positive integers such that $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.
2007 Today's Calculation Of Integral, 209
Let $m,\ n$ be the given distinct positive integers. Answer the following questions.
(1) Find the real number $\alpha \ (|\alpha |<1)$ such that $\int_{-\pi}^{\pi}\sin (m+\alpha )x\ \sin (n+\alpha )x\ dx=0$.
(2) Find the real number $\beta$ satifying the sytem of equation $\int_{-\pi}^{\pi}\sin^{2}(m+\beta )x\ dx=\pi+\frac{2}{4m-1}$, $\int_{-\pi}^{\pi}\sin^{2}(n+\beta )x\ dx=\pi+\frac{2}{4n-1}$.
2011 Purple Comet Problems, 24
The diagram below shows a regular hexagon with an inscribed square where two sides of the square are parallel to two sides of the hexagon. There are positive integers $m$, $n$, and $p$ such that the ratio of the area of the hexagon to the area of the square can be written as $\tfrac{m+\sqrt{n}}{p}$ where $m$ and $p$ are relatively prime. Find $m + n + p$.
[asy]
import graph; size(4cm);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((0,1)--(1,1)--(1.5,1.87)--(1,2.73)--(0,2.73)--(-0.5,1.87)--cycle);
filldraw((1.13,2.5)--(-0.13,2.5)--(-0.13,1.23)--(1.13,1.23)--cycle,grey);
draw((0,1)--(1,1));
draw((1,1)--(1.5,1.87));
draw((1.5,1.87)--(1,2.73));
draw((1,2.73)--(0,2.73));
draw((0,2.73)--(-0.5,1.87));
draw((-0.5,1.87)--(0,1));
draw((1.13,2.5)--(-0.13,2.5));
draw((-0.13,2.5)--(-0.13,1.23));
draw((-0.13,1.23)--(1.13,1.23));
draw((1.13,1.23)--(1.13,2.5)); [/asy]
1963 German National Olympiad, 2
For which numbers $x$of the interval $0 < x <\pi$ holds:
$$\frac{\tan 2x}{\tan x} -\frac{2 \cot 2x}{\cot x}=1$$
2011 Peru MO (ONEM), 2
If $\alpha, \beta, \gamma$ are angles whose measures in radians belong to the interval $\left[0, \frac{\pi}{2}\right]$ such that: $$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 1$$ calculate the minimum possible value of $\cos \alpha + \cos \beta + \cos \gamma$.
2010 Iran MO (3rd Round), 6
In a triangle $ABC$, $\angle C=45$. $AD$ is the altitude of the triangle. $X$ is on $AD$ such that $\angle XBC=90-\angle B$ ($X$ is in the triangle). $AD$ and $CX$ cut the circumcircle of $ABC$ in $M$ and $N$ respectively. if tangent to circumcircle of $ABC$ at $M$ cuts $AN$ at $P$, prove that $P$,$B$ and $O$ are collinear.(25 points)
the exam time was 4 hours and 30 minutes.
2010 Today's Calculation Of Integral, 586
Evaluate $ \int_0^1 \frac{x^{14}}{x^2\plus{}1}\ dx$.
1982 IMO Longlists, 47
Evaluate $\sec'' \frac{\pi}4 +\sec'' \frac{3\pi}4+\sec'' \frac{5\pi}4+\sec'' \frac{7\pi}4$. (Here $\sec''$ means the second derivative of $\sec$).
2001 China Team Selection Test, 2
Let ${a_n}$ be a non-increasing sequence of positive numbers. Prove that if for $n \ge 2001$, $na_{n} \le 1$, then for any positive integer $m \ge 2001$ and $x \in \mathbb{R}$, the following inequality holds:
$\left | \sum_{k=2001}^{m} a_{k} \sin kx \right | \le 1 + \pi$
2005 Kyiv Mathematical Festival, 4
Let $ M$ be the intersection point of medians of a triangle $ \triangle ABC.$ It is known that $ AC \equal{} 2BC$ and $ \angle ACM \equal{} \angle CBM.$ Find $ \angle ACB.$
2010 AIME Problems, 15
In $ \triangle{ABC}$ with $ AB = 12$, $ BC = 13$, and $ AC = 15$, let $ M$ be a point on $ \overline{AC}$ such that the incircles of $ \triangle{ABM}$ and $ \triangle{BCM}$ have equal radii. Let $ p$ and $ q$ be positive relatively prime integers such that $ \tfrac{AM}{CM} = \tfrac{p}{q}$. Find $ p + q$.
2016 Germany National Olympiad (4th Round), 5
Let $A,B,C,D$ be points on a circle with radius $r$ in this order such that $|AB|=|BC|=|CD|=s$ and $|AD|=s+r$. Find all possible values of the interior angles of the quadrilateral $ABCD$.
1997 Korea - Final Round, 2
The incircle of a triangle $ A_1A_2A_3$ is centered at $ O$ and meets the segment $ OA_j$ at $ B_j$ , $ j \equal{} 1, 2, 3$. A circle with center $ B_j$ is tangent to the two sides of the triangle having $ A_j$ as an endpoint and intersects the segment $ OB_j$ at $ C_j$. Prove that
\[ \frac{OC_1\plus{}OC_2\plus{}OC_3}{A_1A_2\plus{}A_2A_3\plus{}A_3A_1} \leq \frac{1}{4\sqrt{3}}\]
and find the conditions for equality.
2014 AIME Problems, 13
On square $ABCD,$ points $E,F,G,$ and $H$ lie on sides $\overline{AB},\overline{BC},\overline{CD},$ and $\overline{DA},$ respectively, so that $\overline{EG} \perp \overline{FH}$ and $EG=FH = 34.$ Segments $\overline{EG}$ and $\overline{FH}$ intersect at a point $P,$ and the areas of the quadrilaterals $AEPH, BFPE, CGPF,$ and $DHPG$ are in the ratio $269:275:405:411.$ Find the area of square $ABCD$.
[asy]
size(200);
defaultpen(linewidth(0.8)+fontsize(10.6));
pair A = (0,sqrt(850));
pair B = (0,0);
pair C = (sqrt(850),0);
pair D = (sqrt(850),sqrt(850));
draw(A--B--C--D--cycle);
dotfactor = 3;
dot("$A$",A,dir(135));
dot("$B$",B,dir(215));
dot("$C$",C,dir(305));
dot("$D$",D,dir(45));
pair H = ((2sqrt(850)-sqrt(120))/6,sqrt(850));
pair F = ((2sqrt(850)+sqrt(306)+7)/6,0);
dot("$H$",H,dir(90));
dot("$F$",F,dir(270));
draw(H--F);
pair E = (0,(sqrt(850)-6)/2);
pair G = (sqrt(850),(sqrt(850)+sqrt(100))/2);
dot("$E$",E,dir(180));
dot("$G$",G,dir(0));
draw(E--G);
pair P = extension(H,F,E,G);
dot("$P$",P,dir(60));
label("$w$", (H+E)/2,fontsize(15));
label("$x$", (E+F)/2,fontsize(15));
label("$y$", (G+F)/2,fontsize(15));
label("$z$", (H+G)/2,fontsize(15));
label("$w:x:y:z=269:275:405:411$",(sqrt(850)/2,-4.5),fontsize(11));
[/asy]
2011 India Regional Mathematical Olympiad, 1
Let $ABC$ be an acute angled scalene triangle with circumcentre $O$ and orthocentre $H.$ If $M$ is the midpoint of $BC,$ then show that $AO$ and $HM$ intersect on the circumcircle of $ABC.$
1999 National Olympiad First Round, 28
Find the number of functions defined on positive real numbers such that $ f\left(1\right) \equal{} 1$ and for every $ x,y\in \Re$, $ f\left(x^{2} y^{2} \right) \equal{} f\left(x^{4} \plus{} y^{4} \right)$.
$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \text{Infinitely many}$
2000 AIME Problems, 8
In trapezoid $ABCD,$ leg $\overline{BC}$ is perpendicular to bases $\overline{AB}$ and $\overline{CD},$ and diagonals $\overline{AC}$ and $\overline{BD}$ are perpendicular. Given that $AB=\sqrt{11}$ and $AD=\sqrt{1001},$ find $BC^2.$
2011 ELMO Shortlist, 7
Determine whether there exist two reals $x,y$ and a sequence $\{a_n\}_{n=0}^{\infty}$ of nonzero reals such that $a_{n+2}=xa_{n+1}+ya_n$ for all $n\ge0$ and for every positive real number $r$, there exist positive integers $i,j$ such that $|a_i|<r<|a_j|$.
[i]Alex Zhu.[/i]
1995 AIME Problems, 14
In a circle of radius 42, two chords of length 78 intersect at a point whose distance from the center is 18. The two chords divide the interior of the circle into four regions. Two of these regions are bordered by segments of unequal lenghts, and the area of either of them can be expressed uniquley in the form $m\pi-n\sqrt{d},$ where $m, n,$ and $d$ are positive integers and $d$ is not divisible by the square of any prime number. Find $m+n+d.$
2001 National Olympiad First Round, 1
Let $A,B,C$ be points on $[OX$ and $D,E,F$ be points on $[OY$ such that $|OA|=|AB|=|BC|$ and $|OD|=|DE|=|EF|$. If $|OA|>|OD|$, which one below is true?
$\textbf{(A)}$ For every $\widehat{XOY}$, $\text{ Area}(AEC)>\text{Area}(DBF)$
$\textbf{(B)}$ For every $\widehat{XOY}$, $\text{ Area}(AEC)=\text{Area}(DBF)$
$\textbf{(C)}$ For every $\widehat{XOY}$, $\text{ Area}(AEC)<\text{Area}(DBF)$
$\textbf{(D)}$ If $m(\widehat{XOY})<45^\circ$ then $\text{Area}(AEC)<\text{Area}(DBF)$, and if $45^\circ < m(\widehat{XOY})<90^\circ$ then $\text{Area}(AEC)>\text{Area}(DBF)$
$\textbf{(E)}$ None of above
2013 ELMO Shortlist, 6
Let $ABCDEF$ be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define $X=AB\cap DE$, $Y=BC\cap EF$, and $Z=CD\cap FA$. Prove that
\[\frac{XY}{XZ}=\frac{BE}{AD}\frac{\sin |\angle{B}-\angle{E}|}{\sin |\angle{A}-\angle{D}|}.\][i]Proposed by Victor Wang[/i]
2014 Dutch IMO TST, 2
Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.