This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 560

1977 IMO Longlists, 33

A circle $K$ centered at $(0,0)$ is given. Prove that for every vector $(a_1,a_2)$ there is a positive integer $n$ such that the circle $K$ translated by the vector $n(a_1,a_2)$ contains a lattice point (i.e., a point both of whose coordinates are integers).

2012 Iran Team Selection Test, 3

Let $n$ be a positive integer. Let $S$ be a subset of points on the plane with these conditions: $i)$ There does not exist $n$ lines in the plane such that every element of $S$ be on at least one of them. $ii)$ for all $X \in S$ there exists $n$ lines in the plane such that every element of $S - {X} $ be on at least one of them. Find maximum of $\mid S\mid$. [i]Proposed by Erfan Salavati[/i]

Kvant 2024, M2812

On the coordinate plane, at some points with integer coordinates, there is a pebble (a finite number of pebbles). It is allowed to make the following move: select a pair of pebbles, take some vector $\vec{a}$ with integer coordinates and then move one of the selected pebbles to vector $\vec{a}$, and the other to the opposite vector $-\vec{a}$; it is forbidden that there should be more than one pebble at one point. Is it always possible to achieve a situation in which all the pebbles lie on the same straight line in a few moves? [i] K. Ivanov [/i]

2007 F = Ma, 1

An object moves in two dimensions according to \[\vec{r}(t) = (4.0t^2 - 9.0)\vec{i} + (2.0t - 5.0)\vec{j}\] where $r$ is in meters and $t$ in seconds. When does the object cross the $x$-axis? $ \textbf{(A)}\ 0.0 \text{ s}\qquad\textbf{(B)}\ 0.4 \text{ s}\qquad\textbf{(C)}\ 0.6 \text{ s}\qquad\textbf{(D)}\ 1.5 \text{ s}\qquad\textbf{(E)}\ 2.5 \text{ s}$

1998 AIME Problems, 11

Three of the edges of a cube are $\overline{AB}, \overline{BC},$ and $\overline{CD},$ and $\overline{AD}$ is an interior diagonal. Points $P, Q,$ and $R$ are on $\overline{AB}, \overline{BC},$ and $\overline{CD},$ respectively, so that $AP=5, PB=15, BQ=15,$ and $CR=10.$ What is the area of the polygon that is the intersection of plane $PQR$ and the cube?

2000 Putnam, 1

Let $a_j$, $b_j$, $c_j$ be integers for $1 \le j \le N$. Assume for each $j$, at least one of $a_j$, $b_j$, $c_j$ is odd. Show that there exists integers $r, s, t$ such that $ra_j+sb_j+tc_j$ is odd for at least $\tfrac{4N}{7}$ values of $j$, $1 \le j \le N$.

1991 Arnold's Trivium, 84

Find the number of positive and negative squares in the canonical form of the quadratic form $\sum_{i<j}(x_i-x_j)^2$ in $n$ variables. The same for the form $\sum_{i<j}x_i x_j$.

2013 India IMO Training Camp, 3

A marker is placed at the origin of an integer lattice. Calvin and Hobbes play the following game. Calvin starts the game and each of them takes turns alternatively. At each turn, one can choose two (not necessarily distinct) integers $a, b$, neither of which was chosen earlier by any player and move the marker by $a$ units in the horizontal direction and $b$ units in the vertical direction. Hobbes wins if the marker is back at the origin any time after the first turn. Prove or disprove that Calvin can prevent Hobbes from winning. Note: A move in the horizontal direction by a positive quantity will be towards the right, and by a negative quantity will be towards the left (and similar directions in the vertical case as well).

1985 Greece National Olympiad, 1

Inside triangle $ABC$ consider random point $O$. Prove that: $$E_A \overrightarrow{OA}+E_B \overrightarrow{OB}+E_C\overrightarrow{OC}=\overrightarrow{O}$$ where $E_A,E_B,E_C$ the areas of triangle $BOC, COB, AOB$ respectively

1988 IMO Shortlist, 8

Let $ u_1, u_2, \ldots, u_m$ be $ m$ vectors in the plane, each of length $ \leq 1,$ with zero sum. Show that one can arrange $ u_1, u_2, \ldots, u_m$ as a sequence $ v_1, v_2, \ldots, v_m$ such that each partial sum $ v_1, v_1 \plus{} v_2, v_1 \plus{} v_2 \plus{} v_3, \ldots, v_1, v_2, \ldots, v_m$ has length less than or equal to $ \sqrt {5}.$

2012 China Team Selection Test, 3

In some squares of a $2012\times 2012$ grid there are some beetles, such that no square contain more than one beetle. At one moment, all the beetles fly off the grid and then land on the grid again, also satisfying the condition that there is at most one beetle standing in each square. The vector from the centre of the square from which a beetle $B$ flies to the centre of the square on which it lands is called the [i]translation vector[/i] of beetle $B$. For all possible starting and ending configurations, find the maximum length of the sum of the [i]translation vectors[/i] of all beetles.

1991 Arnold's Trivium, 30

Tags: vector
Find the sum of the indexes of the singular points other than zero of the vector field \[z\overline{z}^2+z^4+2\overline{z}^4\]

2004 Germany Team Selection Test, 3

We consider graphs with vertices colored black or white. "Switching" a vertex means: coloring it black if it was formerly white, and coloring it white if it was formerly black. Consider a finite graph with all vertices colored white. Now, we can do the following operation: Switch a vertex and simultaneously switch all of its neighbours (i. e. all vertices connected to this vertex by an edge). Can we, just by performing this operation several times, obtain a graph with all vertices colored black? [It is assumed that our graph has no loops (a [i]loop[/i] means an edge connecting one vertex with itself) and no multiple edges (a [i]multiple edge[/i] means a pair of vertices connected by more than one edge).]

1995 Austrian-Polish Competition, 8

Consider the cube with the vertices at the points $(\pm 1, \pm 1, \pm 1)$. Let $V_1,...,V_{95}$ be arbitrary points within this cube. Denote $v_i = \overrightarrow{OV_i}$, where $O = (0,0,0)$ is the origin. Consider the $2^{95}$ vectors of the form $s_1v_1 + s_2v_2 +...+ s_{95}v_{95}$, where $s_i = \pm 1$. (a) If $d = 48$, prove that among these vectors there is a vector $w = (a, b, c)$ such that $a^2 + b^2 + c^2 \le 48$. (b) Find a smaller $d$ (the smaller, the better) with the same property.

1985 Miklós Schweitzer, 11

Let $\xi (E, \pi, B)\, (\pi\colon E\rightarrow B)$ be a real vector bundle of finite rank, and let $$\tau_E=V\xi \oplus H\xi\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, (*)$$ be the tangent bundle of $E$, where $V\xi=\mathrm{Ker}\, d\pi$ is the vertical subbundle of $\tau_E$. Let us denote the projection operators corresponding to the splitting $(*)$ by $v$ and $h$. Construct a linear connection $\nabla$ on $V\xi$ such that $$\nabla_X\lor Y - \nabla_Y \lor X=v[X,Y] - v[hX,hY]$$ ($X$ and $Y$ are vector fields on $E$, $[.,\, .]$ is the Lie bracket, and all data are of class $\mathcal C^\infty$. [J. Szilasi]

2008 Danube Mathematical Competition, 3

On a semicircle centred at $O$ and with radius $1$ choose the respective points $A_1,A_2,...,A_{2n}$ , for $n \in N^*$. The lenght of the projection of the vector $\overrightarrow {u}=\overrightarrow{OA_1} +\overrightarrow{OA_2}+...+\overrightarrow{OA_{2n}}$ on the diameter is an odd integer. Show that the projection of that vector on the diameter is at least $1$.

2010 Today's Calculation Of Integral, 525

Let $ a,\ b$ be real numbers satisfying $ \int_0^1 (ax\plus{}b)^2dx\equal{}1$. Determine the values of $ a,\ b$ for which $ \int_0^1 3x(ax\plus{}b)\ dx$ is maximized.

2015 Online Math Open Problems, 29

Tags: vector
Given vectors $v_1, \dots, v_n$ and the string $v_1v_2 \dots v_n$, we consider valid expressions formed by inserting $n-1$ sets of balanced parentheses and $n-1$ binary products, such that every product is surrounded by a parentheses and is one of the following forms: 1. A "normal product'' $ab$, which takes a pair of scalars and returns a scalar, or takes a scalar and vector (in any order) and returns a vector. \\ 2. A "dot product'' $a \cdot b$, which takes in two vectors and returns a scalar. \\ 3. A "cross product'' $a \times b$, which takes in two vectors and returns a vector. \\ An example of a [i]valid [/i] expression when $n=5$ is $(((v_1 \cdot v_2)v_3) \cdot (v_4 \times v_5))$, whose final output is a scalar. An example of an [i] invalid [/i] expression is $(((v_1 \times (v_2 \times v_3)) \times (v_4 \cdot v_5))$; even though every product is surrounded by parentheses, in the last step one tries to take the cross product of a vector and a scalar. \\ Denote by $T_n$ the number of valid expressions (with $T_1 = 1$), and let $R_n$ denote the remainder when $T_n$ is divided by $4$. Compute $R_1 + R_2 + R_3 + \ldots + R_{1,000,000}$. [i] Proposed by Ashwin Sah [/i]

2014 Cezar Ivănescu, 3

[b]a)[/b] Prove that, for any point in the interior of a triangle, there are two points on the sides of this triangle such that the resultant of the vectors from the interior point those two points is the vector $ 0. $ [b]b)[/b] Prove that, for any point in the interior of a triangle, there are three points on the sides of this triangle such that the resultant of the vectors from the interior point those three points is the vector $ 0. $

2006 AMC 10, 20

In rectangle $ ABCD$, we have $ A \equal{} (6, \minus{} 22)$, $ B \equal{} (2006,178)$, and $ D \equal{} (8,y)$, for some integer $ y$. What is the area of rectangle $ ABCD$? $ \textbf{(A) } 4000 \qquad \textbf{(B) } 4040 \qquad \textbf{(C) } 4400 \qquad \textbf{(D) } 40,000 \qquad \textbf{(E) } 40,400$

2012 Romania Team Selection Test, 3

Let $m$ and $n$ be two positive integers for which $m<n$. $n$ distinct points $X_1,\ldots , X_n$ are in the interior of the unit disc and at least one of them is on its border. Prove that we can find $m$ distinct points $X_{i_1},\ldots , X_{i_m}$ so that the distance between their center of gravity and the center of the circle is at least $\frac{1}{1+2m(1- 1/n)}$.

2019 District Olympiad, 2

Tags: vector , geometry
Let $H$ be the orthocenter of the acute triangle $ABC.$ In the plane of the triangle $ABC$ we consider a point $X$ such that the triangle $XAH$ is right and isosceles, having the hypotenuse $AH,$ and $B$ and $X$ are on each part of the line $AH.$ Prove that $\overrightarrow{XA}+\overrightarrow{XC}+\overrightarrow{XH}=\overrightarrow{XB}$ if and only if $ \angle BAC=45^{\circ}.$

1982 IMO Longlists, 39

Let $S$ be the unit circle with center $O$ and let $P_1, P_2,\ldots, P_n$ be points of $S$ such that the sum of vectors $v_i=\stackrel{\longrightarrow}{OP_i}$ is the zero vector. Prove that the inequality $\sum_{i=1}^n XP_i \geq n$ holds for every point $X$.

2003 China Team Selection Test, 3

Suppose $A\subset \{(a_1,a_2,\dots,a_n)\mid a_i\in \mathbb{R},i=1,2\dots,n\}$. For any $\alpha=(a_1,a_2,\dots,a_n)\in A$ and $\beta=(b_1,b_2,\dots,b_n)\in A$, we define \[ \gamma(\alpha,\beta)=(|a_1-b_1|,|a_2-b_2|,\dots,|a_n-b_n|), \] \[ D(A)=\{\gamma(\alpha,\beta)\mid\alpha,\beta\in A\}. \] Please show that $|D(A)|\geq |A|$.

2011 Iran Team Selection Test, 11

Let $ABC$ be a triangle and $A',B',C'$ be the midpoints of $BC,CA,AB$ respectively. Let $P$ and $P'$ be points in plane such that $PA=P'A',PB=P'B',PC=P'C'$. Prove that all $PP'$ pass through a fixed point.