Found problems: 85335
2010 Today's Calculation Of Integral, 663
Given are the curve $y=x^2+x-2$ and a curve which is obtained by tranfering the curve symmetric with respect to the point $(p,\ 2p)$. Let $p$ change in such a way that these two curves intersects, find the maximum area of the part bounded by these curves.
[i]1978 Nagasaki University entrance exam/Economics[/i]
VMEO I 2004, 3
In the plane, given an angle $Axy$.
a) Given a triangle $MNP$ of area $T$, describe how to construct a triangle of given area $T$ and altitude $h$. Using this, describe how to construct parallelogram A$BCD$ with two sides lying on $Ax$ and $Ay$, the area $T$ and the distance between the two opposite sides equal to d given.
b) From an arbitrary point $I$ on the line $CD$, construct a line that intersects the lines $A$B, $BC$, $AD$ at $E$, $G$ and $F$ respectively so that the area of triangle $AEF$ is equal to the area of parallelogram $ABCD$.
c) Apply the above two sentences: Given any point $O$ in the plane. From $O$, construct a line that intersects two rays $Ax$ and $Ay$ at $E$ and $F$ respectively so that the area of triangle $AEF$ is equal to the area of any given triangle.
1980 AMC 12/AHSME, 26
Four balls of radius 1 are mutually tangent, three resting on the floor and the fourth resting on the others. A tetrahedron, each of whose edges have length $s$, is circumscribed around the balls. Then $s$ equals
$\text{(A)} \ 4\sqrt 2 \qquad \text{(B)} \ 4\sqrt 3 \qquad \text{(C)} \ 2\sqrt 6 \qquad \text{(D)} \ 1+2\sqrt 6 \qquad \text{(E)} \ 2+2\sqrt 6$
the 10th XMO, 2
Given acute triangle $\vartriangle ABC$ with orthocenter $H$ and circumcenter $O$ ($O \ne H$) . Let $\Gamma$ be the circumcircle of $\vartriangle BOC$ . Segment $OH$ untersects $\Gamma$ at point $P$. Extension of $AO$ intersects $\Gamma$ at point $K$. If $AP \perp OH$, prove that $PK$ bisects $BC$.
[img]https://cdn.artofproblemsolving.com/attachments/a/b/267053569c41692f47d8f4faf2a31ebb4f4efd.png[/img]
2022 Girls in Mathematics Tournament, 3
There are $n$ cards. Max and Lewis play, alternately, the following game
Max starts the game, he removes exactly $1$ card, in each round the current player can remove any quantity of cards, from $1$ card to $t+1$ cards, which $t$ is the number of removed cards by the previous player, and the winner is the player who remove the last card. Determine all the possible values of $n$ such that Max has the winning strategy.
1988 Putnam, B3
For every $n$ in the set $\mathrm{N} = \{1,2,\dots \}$ of positive integers, let $r_n$ be the minimum value of $|c-d\sqrt{3}|$ for all nonnegative integers $c$ and $d$ with $c+d=n$. Find, with proof, the smallest positive real number $g$ with $r_n \leq g$ for all $n \in \mathbb{N}$.
2022-23 IOQM India, 8
Suppose the prime numbers $p$ and $q$ satisfy $q^2+3p=197p^2+q$.Write $\frac{p}{q}$ as $l+\frac{m}{n}$, where $l,m,n$ are positive integers , $m<n$ and $GCD(m,n)=1$. Find the maximum value of $l+m+n$.
2020 GQMO, 4
Prove that, for all sufficiently large integers $n$, there exists $n$ numbers $a_1, a_2, \dots, a_n$ satisfying the following three conditions:
[list]
[*] Each number $a_i$ is equal to either $-1, 0$ or $1$.
[*] At least $\frac{2n}{5}$ of the numbers $a_1, a_2, \dots, a_n$ are non-zero.
[*] The sum $\frac{a_1}{1} + \frac{a_2}{2} + \dots + \frac{a_n}{n}$ is $0$.
[/list]
$\textit{Note: Results with 2/5 replaced by a constant } c \textit{ will be awarded points depending on the value of } c$
[i]Proposed by Navneel Singhal, India; Kyle Hess, USA; and Vincent Jugé, France[/i]
2021 Polish Junior MO Second Round, 2
Given is the square $ABCD$. Point $E$ lies on the diagonal $AC$, where $AE> EC$. On the side $AB$, a different point from $B$ has been selected for which $EF = DE$. Prove that $\angle DEF = 90^o$.
1993 Greece National Olympiad, 13
Jenny and Kenny are walking in the same direction, Kenny at 3 feet per second and Jenny at 1 foot per second, on parallel paths that are 200 feet apart. A tall circular building 100 feet in diameter is centered midway between the paths. At the instant when the building first blocks the line of sight between Jenny and Kenny, they are 200 feet apart. Let $t$ be the amount of time, in seconds, before Jenny and Kenny can see each other again. If $t$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?
1997 IberoAmerican, 3
Let $n \geq2$ be an integer number and $D_n$ the set of all the points $(x,y)$ in the plane such that its coordinates are integer numbers with: $-n \le x \le n$ and $-n \le y \le n$.
(a) There are three possible colors in which the points of $D_n$ are painted with (each point has a unique color). Show that with
any distribution of the colors, there are always two points of $D_n$ with the same color such that the line that contains them does not go through any other point of $D_n$.
(b) Find a way to paint the points of $D_n$ with 4 colors such that if a line contains exactly two points of $D_n$, then, this points have different colors.
2017 AMC 10, 12
Let $S$ be the set of points $(x,y)$ in the coordinate plane such that two of the three quantities $3$, $x+2$, and $y-4$ are equal and the third of the three quantities is no greater than this common value. Which of the following is a correct description of $S$?
$\textbf{(A) } \text{a single point} \qquad \textbf{(B) } \text{two intersecting lines} \\ \\ \textbf{(C) } \text{three lines whose pairwise intersections are three distinct points} \\ \\ \textbf{(D) } \text{a triangle} \qquad \textbf{(E) } \text{three rays with a common endpoint}$
2017 Tournament Of Towns, 4
All the sides of the convex hexagon $ABCDEF$ are equal. In addition, $AD = BE = CF$.
Prove that a circle can be inscribed into this hexagon.
[i](Boyan Obukhov)[/i]
2009 IMO Shortlist, 5
Five identical empty buckets of $2$-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
2006 Chile National Olympiad, 3
We have the following board of $2 \times 6$.
[asy]
unitsize(0.8 cm);
int i;
draw((0,0)--(6,0));
draw((0,1)--(6,1));
draw((0,2)--(6,2));
for (i = 0; i <= 6; ++i) {
draw((i,0)--(i,2));
}
dot("$A$", (0,2), NW);
dot("$B$", (6,2), NE);
dot("$C$", (3,0), S);
[/asy]
Find in how many ways you can go from point $A$ to point $B$, moving by the segments of the board, respecting the following rules:
- You cannot pass through the same point twice.
- You can only make three types of movements moving through the segments: To the right, up, down
- You have to go through point $C$.
2018 All-Russian Olympiad, 7
Given a sequence of positive integers $a_1,a_2,a_3,...$ defined by $a_n=\lfloor n^{\frac{2018}{2017}}\rfloor$. Show that there exists a positive integer $N$ such that among any $N$ consecutive terms in the sequence, there exists a term whose decimal representation contain digit $5$.
2024 Czech and Slovak Olympiad III A, 4
There were $10$ boys and $10$ girls at the party. Every boy likes a different 'positive' number of girls. Every girl likes a different positive number of boys. Define the largest non-negative integer $n$ such that it is always possible to form at least $n$ disjoint pairs in which both like the other.
2003 Portugal MO, 5
A shepherd left, as an inheritance, to his children a flock of $k$ sheep, distributed as follows: the oldest received $\left\lfloor\frac{k}{2}\right\rfloor$ sheep, the middle one $\left\lfloor\frac{k}{3}\right\rfloor$ sheep and the youngest $\left\lfloor\frac{k}{5}\right\rfloor$ sheep. Knowing that there are no sheep left, determine all possible values for $k$.
2006 Cuba MO, 3
$k$ squares of a $m\times n$ gridded board are painted in such a way that the following property holds:
[i]If the centers of four squares are the vertices of a quadrilateral of sides parallel to the edges of the board, then at most two of these boxes must be painted..[/i]
Find the largest possible value of $k$.
1978 IMO Longlists, 54
Let $p, q$ and $r$ be three lines in space such that there is no plane that is parallel to all three of them. Prove that there exist three planes $\alpha, \beta$, and $\gamma$, containing $p, q$, and $r$ respectively, that are perpendicular to each other $(\alpha\perp\beta, \beta\perp\gamma, \gamma\perp \alpha).$
2007 China Team Selection Test, 1
Points $ A$ and $ B$ lie on the circle with center $ O.$ Let point $ C$ lies outside the circle; let $ CS$ and $ CT$ be tangents to the circle. $ M$ be the midpoint of minor arc $ AB$ of $ (O).$ $ MS,\,MT$ intersect $ AB$ at points $ E,\,F$ respectively. The lines passing through $ E,\,F$ perpendicular to $ AB$ cut $ OS,\,OT$ at $ X$ and $ Y$ respectively.
A line passed through $ C$ intersect the circle $ (O)$ at $ P,\,Q$ ($ P$ lies on segment $ CQ$). Let $ R$ be the intersection of $ MP$ and $ AB,$ and let $ Z$ be the circumcentre of triangle $ PQR.$
Prove that: $ X,\,Y,\,Z$ are collinear.
2000 AMC 12/AHSME, 6
Two different prime numbers between $ 4$ and $ 18$ are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?
$ \textbf{(A)}\ 21 \qquad \textbf{(B)}\ 60\qquad \textbf{(C)}\ 119 \qquad \textbf{(D)}\ 180\qquad \textbf{(E)}\ 231$
2012 Turkey Team Selection Test, 1
In a triangle $ABC,$ incircle touches the sides $BC, CA, AB$ at $D, E, F,$ respectively. A circle $\omega$ passing through $A$ and tangent to line $BC$ at $D$ intersects the line segments $BF$ and $CE$ at $K$ and $L,$ respectively. The line passing through $E$ and parallel to $DL$ intersects the line passing through $F$ and parallel to $DK$ at $P.$ If $R_1, R_2, R_3, R_4$ denotes the circumradius of the triangles $AFD, AED, FPD, EPD,$ respectively, prove that $R_1R_4=R_2R_3.$
LMT Speed Rounds, 2022 F
[b]p1.[/b] Each box represents $1$ square unit. Find the area of the shaded region.
[img]https://cdn.artofproblemsolving.com/attachments/0/0/f8f8ad6d771f3bbbc59b374a309017cecdce5a.png[/img]
[b]p2.[/b] Evaluate $(3^3)\sqrt{5^2-2^4} -5 \cdot 9$.
[b]p3.[/b] Find the last two digits of $21^3$.
[b]p4.[/b] Let $L$, $M$, and $T$ be distinct prime numbers. Find the least possible odd value of$ L+M +T$ .
[b]p5.[/b]Two circles have areas that sum to $20\pi$ and diameters that sum to $12$. Find the radius of the smaller circle.
[b]p6.[/b] Zach and Evin each independently choose a date in the year $2022$, uniformly and randomly. The probability that at least one of the chosen dates is December $17$, $2022$ can be expressed as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $A$.
[b]p7.[/b] Let $L$ be a list of $2023$ real numbers with medianm. When any two numbers are removed from $L$, its median is still $m$. Find the greatest possible number of distinct values in $L$.
[b]p8.[/b] Some children and adults are eating a delicious pile of sand. Children comprise $20\%$ of the group and combined, they consume $80\%$ of the sand. Given that on average, each child consumes $N$ pounds of sand and on average, each adult consumes $M$ pounds of sand, find $\frac{N}{M}$.
[b]p9.[/b] An integer $N$ is chosen uniformly and randomly from the set of positive integers less than $100$. The expectedm number of digits in the base-$10$-representation of $N$ can be expressed as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A+B$.
[b]p10.[/b] Dunan is taking a calculus course in which the final exam counts for $15\%$ of the total grade. Dunan wishes to have an $A$ in the course, which is defined as a grade of $93\%$ or above. When counting everything but the final exam, he currently has a $92\%$ in the course. What is the minimum integer grade Dunan must get on the final exam in order to get an $A$ in the course?
[b]p11.[/b] Norbert, Eorbert, Sorbert, andWorbert start at the origin of the Cartesian Plane and walk in the positive $y$, positive $x$, negative $y$, and negative $x$ directions respectively at speeds of $1$, $2$, $3$, and $4$ units per second respectively. After how many seconds will the quadrilateral with a vertex at each person’s location have area $300$?
[b]p12.[/b] Find the sum of the unique prime factors of $1020201$.
[b]p13.[/b] HacoobaMatata rewrites the base-$10$ integers from $0$ to $30$ inclusive in base $3$. How many times does he write the digit $1$?
[b]p14.[/b] The fractional part of $x$ is $\frac17$. The greatest possible fractional part of $x^2$ can be written as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A+B$.
[b]p15.[/b] For howmany integers $x$ is $-2x^2 +8 \ge x^2 -3x +2$?
[b]p16.[/b] In the figure below, circle $\omega$ is inscribed in square $EFGH$, which is inscribed in unit square $ABCD$ such that $\overline{EB} = 2\overline{AE}$. If the minimum distance from a point on $\omega$ to $ABCD$ can be written as $\frac{P-\sqrt{Q}}{R}$ with $Q$ square-free, find $10000P +100Q +R$.
[img]https://cdn.artofproblemsolving.com/attachments/a/1/c6e5400bc508ab14f34987c9f5f4039daaa4d6.png[/img]
[b]p17.[/b] There are two base number systems in use in the LHS Math Team. One member writes “$13$ people usemy base, while $23$ people use the other, base $12$.” Another member writes “out of the $34$ people in the club, $10$ use both bases while $9$ use neither.” Find the sum of all possible numbers ofMath Team members, as a regular decimal number.
[b]p18.[/b] Sam is taking a test with $100$ problems. On this test the questions gradually get harder in such a way that for question $i$ , Sam has a $\frac{(101-i)^2}{ 100} \%$ chance to get the question correct. Suppose the expected number of questions Sam gets correct can be written as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A+B$.
[b]p19.[/b] In an ordered $25$-tuple, each component is an integer chosen uniformly and randomly from $\{1,2,3,4,5\}$. Ephram and Zach both copy this tuple into a $5\times 5$ grid, both starting from the top-left corner. Ephram writes five components from left to right to fill one row before continuing down to the next row. Zach writes five components from top to bottom to fill one column before continuing right to the next column. Find the expected number of spaces on their grids where Zach and Ephram have the same integer written.
[b]p20.[/b] In $\vartriangle ABC$ with circumcenter $O$ and circumradius $8$, $BC = 10$. Let $r$ be the radius of the circle that passes through $O$ and is tangent to $BC$ at $C$. The value of $r^2$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $1000m+n$.
[b]p21.[/b] Find the number of integer values of $n$ between $1$ and $100$ inclusive such that the sum of the positive divisors of $2n$ is at least $220\%$ of the sum of the divisors of $n$.
[b]p22.[/b] Twenty urns containing one ball each are arranged in a circle. Ernie then moves each ball either $1$, $2$ or $3$ urns clockwise, chosen independently, uniformly, and randomly. The expected number of empty urns after this process is complete can be expressed as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A+B$.
[b]p23.[/b] Hannah the cat begins at $0$ on a number line. Every second, Hannah jumps $1$ unit in the positive or negative direction, chosen uniformly at random. After $7$ seconds,Hannah‘s expected distance from $0$, in units, can be expressed as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A+B$.
[b]p24.[/b] Find the product of all primes $p < 30$ for which there exists an integer $n$ such that $p$ divides $n +(n +1)^{-1}\,\, (mod \,\,p)$.
[b]p25.[/b] In quadrilateral $ABCD$, $\angle ABD = \angle CBD = \angle C AD$, $AB = 9$, $BC = 6$, and $AC = 10$. The area of $ABCD$ can be expressed as $\frac{P\sqrt{Q}}{R}$ with $Q$ squarefree and $P$ and $R$ relatively prime. Find $10000P +100Q +R$.
[img]https://cdn.artofproblemsolving.com/attachments/4/8/28569605b262c8f26e685e27f5f261c70a396c.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2004 Gheorghe Vranceanu, 3
Let $ a,b,c $ be real numbers satisfying $ \left\lfloor a^2+b^2+c^2 \right\rfloor \le\lfloor ab+bc+ca \rfloor . $ Show that:
$$ 2 >\max\left\{ \left| -2a+b+c \right| ,\left| a-2b+c \right| ,\left| a+b-2c \right| \right\} $$
[i]Merticaru[/i]