This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1992 Baltic Way, 19

Let $ C$ be a circle in plane. Let $ C_1$ and $ C_2$ be nonintersecting circles touching $ C$ internally at points $ A$ and $ B$ respectively. Let $ t$ be a common tangent of $ C_1$ and $ C_2$ touching them at points $ D$ and $ E$ respectively, such that both $ C_1$ and $ C_2$ are on the same side of $ t$. Let $ F$ be the point of intersection of $ AD$ and $ BE$. Show that $ F$ lies on $ C$.

1950 Putnam, A2

Tags:
Answer both (i) and (ii). Test for convergence the series (i) \[ \frac 1{\log (2!)} + \frac 1{\log (3!)} + \frac 1{\log (4!)} + \cdots + \frac 1{\log (n!)} +\cdots\] (ii) \[ \frac 13 + \frac 1{3\sqrt3} + \frac 1{3\sqrt3 \sqrt[3]3} + \cdots + \frac 1{3\sqrt3 \sqrt[3]3 \cdots \sqrt[n]3} + \cdots\]

2017 Kyiv Mathematical Festival, 3

Each cell of a $7\times7$ table is painted with one of several colours. It is known that for any two distinct rows the numbers of colours used to paint them are distinct and for any two distinct columns the numbers of colours used to paint them are distinct.What is the maximum possible number of colours in the table?

2008 iTest Tournament of Champions, 5

Two squares of side length $2$ are glued together along their boundary so that the four vertices of the first square are glued to the midpoints of the four sides of the other square, and vice versa. This gluing results in a convex polyhedron. If the square of the volume of this polyhedron is written in simplest form as $\tfrac{a+b\sqrt c}d$, what is the value of $a+b+c+d$?

2012 Iran MO (2nd Round), 3

Prove that if $t$ is a natural number then there exists a natural number $n>1$ such that $(n,t)=1$ and none of the numbers $n+t,n^2+t,n^3+t,....$ are perfect powers.

2024 Chile Classification NMO Seniors, 4

Tags: geometry
Consider a right triangle $\triangle ABC$ with right angle at $A$. Let $CD$ be the bisector of angle $\angle ACB$, where $D$ lies on segment $AB$. The perpendicular line from $B$ to $BC$ intersects $CD$ at $E$. Let $F$ be the reflection of $E$ over $B$, and let $P$ be the intersection of $DF$ with $BC$. Prove that lines $EP$ and $CF$ are perpendicular.

1961 Czech and Slovak Olympiad III A, 2

Let a right isosceles triangle $APQ$ with the hypotenuse $AP$ be given in plane. Construct such a square $ABCD$ that the lines $BC, CD$ contain points $P, Q,$ respectively. Compute the length of side $AB = b$ in terms of $AQ=a$.

2018 ABMC, Team

[u]Round 5[/u] [b]5.1.[/b] A triangle has lengths such that one side is $12$ less than the sum of the other two sides, the semi-perimeter of the triangle is $21$, and the largest and smallest sides have a difference of $2$. Find the area of this triangle. [b]5.2.[/b] A rhombus has side length $85$ and diagonals of integer lengths. What is the sum of all possible areas of the rhombus? [b]5.3.[/b] A drink from YAKSHAY’S SHAKE SHOP is served in a container that consists of a cup, shaped like an upside-down truncated cone, and a semi-spherical lid. The ratio of the radius of the bottom of the cup to the radius of the lid is $\frac23$ , the volume of the combined cup and lid is $296\pi$, and the height of the cup is half of the height of the entire drink container. What is the volume of the liquid in the cup if it is filled up to half of the height of the entire drink container? [u]Round 6[/u] [i]Each answer in the next set of three problems is required to solve a different problem within the same set. There is one correct solution to all three problems; however, you will receive points for any correct answer regardless whether other answers are correct.[/i] [b]6.1.[/b] Let the answer to problem $2$ be $b$. There are b people in a room, each of which is either a truth-teller or a liar. Person $1$ claims “Person $2$ is a liar,” Person $2$ claims “Person $3$ is a liar,” and so on until Person $b$ claims “Person $1$ is a liar.” How many people are truth-tellers? [b]6.2.[/b] Let the answer to problem $3$ be $c$. What is twice the area of a triangle with coordinates $(0, 0)$, $(c, 3)$ and $(7, c)$ ? [b]6.3.[/b] Let the answer to problem $ 1$ be $a$. Compute the smaller zero to the polynomial $x^2 - ax + 189$ which has $2$ integer roots. [u]Round 7[/u] [b]7.1. [/b]Sir Isaac Neeton is sitting under a kiwi tree when a kiwi falls on his head. He then discovers Neeton’s First Law of Kiwi Motion, which states: [i]Every minute, either $\left\lfloor \frac{1000}{d} \right\rfloor$ or $\left\lceil \frac{1000}{d} \right\rceil$ kiwis fall on Neeton’s head, where d is Neeton’s distance from the tree in centimeters.[/i] Over the next minute, $n$ kiwis fall on Neeton’s head. Let $S$ be the set of all possible values of Neeton’s distance from the tree. Let m and M be numbers such that $m < x < M$ for all elements $x$ in $S$. If the least possible value of $M - m$ is $\frac{2000}{16899}$ centimeters, what is the value of $n$? Note that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, and $\lceil x \rceil$ is the least integer greater than or equal to $x$. [b]7.2.[/b] Nithin is playing chess. If one queen is randomly placed on an $ 8 \times 8$ chessboard, what is the expected number of squares that will be attacked including the square that the queen is placed on? (A square is under attack if the queen can legally move there in one move, and a queen can legally move any number of squares diagonally, horizontally or vertically.) [b]7.3.[/b] Nithin is writing binary strings, where each character is either a $0$ or a $1$. How many binary strings of length $12$ can he write down such that $0000$ and $1111$ do not appear? [u]Round 8[/u] [b]8.[/b] What is the period of the fraction $1/2018$? (The period of a fraction is the length of the repeated portion of its decimal representation.) Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input. $$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.1 |I|}, 13 - \frac{|I-X|}{0.1 |I-2X|} \right\} \right\rceil \right\}$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2765571p24215461]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2001 Austria Beginners' Competition, 1

Prove that for every odd positive integer $n$ the number $n^n-n$ is divisible by $24$.

2006 Singapore Senior Math Olympiad, 5

Tags:
In a non-recent edition of [i]Ripley's Believe It or Not[/i], it was stated that the number $N = 526315789473684210$ is a [i]persistent number[/i], that is, if multiplied by any positive integer the resulting number always contains the ten digits $0, 1, 2, 3,..., 8, 9$ in some order with possible repetitions. a) Prove or disprove the above statement. b) Are there any persistent numbers smaller than the above number?

2023 Regional Competition For Advanced Students, 2

Let $ABCD$ be a rhombus with $\angle BAD < 90^o$. The circle passing through $D$ with center $A$ intersects the line $CD$ a second time in point $E$. Let $S$ be the intersection of the lines $BE$ and $AC$. Prove that the points $A$, $S$, $D$ and $E$ lie on a circle. [i](Karl Czakler)[/i]

2016 Switzerland - Final Round, 6

Let $a_n$ be a sequence of natural numbers defined by $a_1 = m$ and for $n > 1$. We call apair$ (a_k, a_{\ell })$ [i]interesting [/i] if (i) $0 < \ell - k < 2016$, (ii) $a_k$ divides $a_{\ell }$. Show that there exists a $m$ such that the sequence $a_n$ contains no interesting pair.

Indonesia Regional MO OSP SMA - geometry, 2014.2

Given an acute triangle $ABC$ with $AB <AC$. The ex-circles of triangle $ABC$ opposite $B$ and $C$ are centered on $B_1$ and $C_1$, respectively. Let $D$ be the midpoint of $B_1C_1$. Suppose that $E$ is the point of intersection of $AB$ and $CD$, and $F$ is the point of intersection of $AC$ and $BD$. If $EF$ intersects $BC$ at point $G$, prove that $AG$ is the bisector of $\angle BAC$.

2021 Brazil National Olympiad, 8

A triple of positive integers $(a,b,c)$ is [i]brazilian[/i] if $$a|bc+1$$ $$b|ac+1$$ $$c|ab+1$$ Determine all the brazilian triples.

2020 Junior Macedonian National Olympiad, 5

Let $T$ be a triangle whose vertices have integer coordinates, such that each side of $T$ contains exactly $m$ points with integer coordinates. If the area of $T$ is less than $2020$, determine the largest possible value of $m$.

2002 District Olympiad, 2

a) Let $x$ be a real number such that $x^2+x$ and $x^3+2x$ are rational numbers. Show that $x$ is a rational number. b) Show that there exist irrational numbers $x$ such that $x^2+x$and $x^3-2x$ are rational.

2022 Brazil EGMO TST, 1

Tags: algebra
Let $a, b, c$ be positive real numbers such that: $$ab - c = 3$$ $$abc = 18$$ Calculate the numerical value of $\frac{ab}{c}$

2012 Mediterranean Mathematics Olympiad, 2

In an acute $\triangle ABC$, prove that \begin{align*}\frac{1}{3}\left(\frac{\tan^2A}{\tan B\tan C}+\frac{\tan^2 B}{\tan C\tan A}+\frac{\tan^2 C}{\tan A\tan B}\right) \\ +3\left(\frac{1}{\tan A+\tan B+\tan C}\right)^{\frac{2}{3}}\ge 2.\end{align*}

1974 AMC 12/AHSME, 26

The number of distinct positive integral divisors of $(30)^4$ excluding $1$ and $(30)^4$ is $ \textbf{(A)}\ 100 \qquad\textbf{(B)}\ 125 \qquad\textbf{(C)}\ 123 \qquad\textbf{(D)}\ 30 \qquad\textbf{(E)}\ \text{none of these} $

2003 Argentina National Olympiad, 3

Let $a\geq 4$ be a positive integer. Determine the smallest value of $n\geq 5$, $n\neq a$, such that $a$ can be represented in the form$$a=\frac{x_1^2+x_2^2+\cdots + x_n^ 2}{x_1x_2\cdots x_n}$$for a suitable choice of the $n$ positive integers $x_1,x_2,\ldots ,x_n$.

2019 Saudi Arabia Pre-TST + Training Tests, 1.3

Let $ABCDEF$ be a convex hexagon satisfying $AC = DF, CE = FB$ and $EA = BD$. Prove that the lines connecting the midpoints of opposite sides of the hexagon $ABCDEF$ intersect in one point.

2011 Math Prize For Girls Problems, 16

Tags: ellipse , conic , geometry
Let $N$ be the number of ordered pairs of integers $(x, y)$ such that \[ 4x^2 + 9y^2 \le 1000000000. \] Let $a$ be the first digit of $N$ (from the left) and let $b$ be the second digit of $N$. What is the value of $10a + b$ ?

2025 Belarusian National Olympiad, 11.8

In some cells of the table $2025 \times 2025$ crosses are placed. A set of 2025 cells we will call balanced if no two of them are in the same row or column. It is known that any balanced set has at least $k$ crosses. Find the minimal $k$ for which it is always possible to color crosses in two colors such that any balanced set has crosses of both colors. [i]M. Karpuk[/i]

Ukrainian TYM Qualifying - geometry, 2010.16

Points $A, B, C, D$ lie on the sphere of radius $1$. It is known that $AB\cdot AC\cdot AD\cdot BC\cdot BD\cdot CD=\frac{512}{27}$. Prove that $ABCD$ is a regular tetrahedron.

2007 Indonesia TST, 2

Tags: function , algebra
Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ f(f(x \plus{} y)) \equal{} f(x \plus{} y) \plus{} f(x)f(y) \minus{} xy\] for all real numbers $x$ and $y$.