This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2005 AMC 12/AHSME, 24

All three vertices of an equilateral triangle are on the parabola $ y \equal{} x^2$, and one of its sides has a slope of 2. The x-coordinates of the three vertices have a sum of $ m/n$, where $ m$ and $ n$ are relatively prime positive integers. What is the value of $ m \plus{} n$? $ \textbf{(A)}\ 14\qquad \textbf{(B)}\ 15\qquad \textbf{(C)}\ 16\qquad \textbf{(D)}\ 17\qquad \textbf{(E)}\ 18$

2000 Harvard-MIT Mathematics Tournament, 5

Given $\cos (\alpha + \beta) + sin (\alpha - \beta) = 0$, $\tan \beta =\frac{1}{2000}$, find $\tan \alpha$.

2016 Costa Rica - Final Round, G3

Let $\vartriangle ABC$ be acute, with incircle $\Gamma$ and incenter $ I$. $\Gamma$ touches sides $AB$, $BC$ and $AC$ at $Z$, $X$ and $Y$, respectively. Let $D$ be the intersection of $XZ$ with $CI$ and $L$ the intersection of $BI$ with $XY$. Suppose $D$ and $L$ are outside of $\vartriangle ABC$. Prove that $A$, $D$, $Z$, $I$, $Y$, and $ L$ lie on a circle.

1995 Singapore MO Open, 3

Let $P$ be a point inside $\vartriangle ABC$. Let $D, E, F$ be the feet of the perpendiculars from $P$ to the lines $BC, CA$ and $AB$, respectively (see Fig. ). Show that (i) $EF = AP \sin A$, (ii) $PA+ PB + PC \ge 2(PE+ PD+ PF)$ [img]https://cdn.artofproblemsolving.com/attachments/d/f/f37d8764fc7d99c2c3f4d16f66223ef39dfd09.png[/img]

2020 Online Math Open Problems, 30

Tags:
Let $c$ be the smallest positive real number such that for all positive integers $n$ and all positive real numbers $x_1$, $\ldots$, $x_n$, the inequality \[ \sum_{k=0}^n \frac{(n^3+k^3-k^2n)^{3/2}}{\sqrt{x_1^2+\dots +x_k^2+x_{k+1}+\dots +x_n}} \leq \sqrt{3}\left(\sum_{i=1}^n \frac{i^3(4n-3i+100)}{x_i}\right)+cn^5+100n^4 \] holds. Compute $\lfloor 2020c \rfloor$. [i]Proposed by Luke Robitaille[/i]

1989 IMO Shortlist, 8

Let $ R$ be a rectangle that is the union of a finite number of rectangles $ R_i,$ $ 1 \leq i \leq n,$ satisfying the following conditions: [b](i)[/b] The sides of every rectangle $ R_i$ are parallel to the sides of $ R.$ [b](ii)[/b] The interiors of any two different rectangles $ R_i$ are disjoint. [b](iii)[/b] Each rectangle $ R_i$ has at least one side of integral length. Prove that $ R$ has at least one side of integral length. [i]Variant:[/i] Same problem but with rectangular parallelepipeds having at least one integral side.

2001 Stanford Mathematics Tournament, 2

Tags: college
How many positive integers between 1 and 400 (inclusive) have exactly 15 positive integer factors?

2022 Putnam, A3

Tags:
Let $p$ be a prime number greater than 5. Let $f(p)$ denote the number of infinite sequences $a_1, a_2, a_3,\ldots$ such that $a_n \in \{1, 2,\ldots, p-1\}$ and $a_na_{n+2}\equiv1+a_{n+1}$ (mod $p$) for all $n\geq 1.$ Prove that $f(p)$ is congruent to 0 or 2 (mod 5).

1958 November Putnam, A2

Tags: sequence
Let $R_1 =1$ and $R_{n+1}= 1+ n\slash R_n$ for $n\geq 1.$ Show that for $n\geq 1,$ $$ \sqrt{n} \leq R_n \leq \sqrt{n} +1.$$

2012 AMC 8, 17

A square with integer side length is cut into 10 squares, all of which have integer side length and at least 8 of which have area 1. What is the smallest possible value of the length of the side of the original square? $\textbf{(A)}\hspace{.05in}3 \qquad \textbf{(B)}\hspace{.05in}4 \qquad \textbf{(C)}\hspace{.05in}5 \qquad \textbf{(D)}\hspace{.05in}6 \qquad \textbf{(E)}\hspace{.05in}7 $

2010 Romania Team Selection Test, 2

Let $ABC$ be a scalene triangle, let $I$ be its incentre, and let $A_1$, $B_1$ and $C_1$ be the points of contact of the excircles with the sides $BC$, $CA$ and $AB$, respectively. Prove that the circumcircles of the triangles $AIA_1$, $BIB_1$ and $CIC_1$ have a common point different from $I$. [i]Cezar Lupu & Vlad Matei[/i]

2007 Swedish Mathematical Competition, 3

Let $\alpha$, $\beta$, $\gamma$ be the angles of a triangle. If $a$, $b$, $c$ are the side length of the triangle and $R$ is the circumradius, show that \[ \cot \alpha + \cot \beta +\cot \gamma =\frac{R\left(a^2+b^2+c^2\right)}{abc} \]

Mid-Michigan MO, Grades 5-6, 2010

[b]p1.[/b] Ben and his dog are walking on a path around a lake. The path is a loop $500$ meters around. Suddenly the dog runs away with velocity $10$ km/hour. Ben runs after it with velocity $8$ km/hour. At the moment when the dog is $250$ meters ahead of him, Ben turns around and runs at the same speed in the opposite direction until he meets the dog. For how many minutes does Ben run? [b]p2.[/b] The six interior angles in two triangles are measured. One triangle is obtuse (i.e. has an angle larger than $90^o$) and the other is acute (all angles less than $90^o$). Four angles measure $120^o$, $80^o$, $55^o$ and $10^o$. What is the measure of the smallest angle of the acute triangle? [b]p3.[/b] The figure below shows a $ 10 \times 10$ square with small $2 \times 2$ squares removed from the corners. What is the area of the shaded region? [img]https://cdn.artofproblemsolving.com/attachments/7/5/a829487cc5d937060e8965f6da3f4744ba5588.png[/img] [b]p4.[/b] Two three-digit whole numbers are called relatives if they are not the same, but are written using the same triple of digits. For instance, $244$ and $424$ are relatives. What is the minimal number of relatives that a three-digit whole number can have if the sum of its digits is $10$? [b]p5.[/b] Three girls, Ann, Kelly, and Kathy came to a birthday party. One of the girls wore a red dress, another wore a blue dress, and the last wore a white dress. When asked the next day, one girl said that Kelly wore a red dress, another said that Ann did not wear a red dress, the last said that Kathy did not wear a blue dress. One of the girls was truthful, while the other two lied. Which statement was true? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Harvard-MIT Mathematics Tournament, 7

Tags: calculus
Let $x$ be a positive real number. Find the maximum possible value of \[\frac{x^2+2-\sqrt{x^4+4}}{x}.\]

2007 AMC 10, 11

The numbers from $ 1$ to $ 8$ are placed at the vertices of a cube in such a manner that the sum of the four numbers on each face is the same. What is this common sum? $ \textbf{(A)}\ 14 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 20 \qquad \textbf{(E)}\ 24$

2003 Tuymaada Olympiad, 3

Alphabet $A$ contains $n$ letters. $S$ is a set of words of finite length composed of letters of $A$. It is known that every infinite sequence of letters of $A$ begins with one and only one word of $S$. Prove that the set $S$ is finite. [i]Proposed by F. Bakharev[/i]

2016 PUMaC Team, 1

Tags: geometry
Quadrilateral $ABCD$ has integer side lengths, and angles $ABC, ACD$, and $BAD$ are right angles. Compute the smallest possible value of $AD$.

1994 All-Russian Olympiad Regional Round, 10.7

In a convex pentagon $ ABCDE$ side $ AB$ is perpendicular to $ CD$ and side $ BC$ is perpendicular to $ DE$. Prove that if $ AB \equal{} AE \equal{} ED \equal{} 1$, then $ BC \plus{} CD < 1$.

2021 Greece Junior Math Olympiad, 2

Anna and Basilis play a game writing numbers on a board as follows: The two players play in turns and if in the board is written the positive integer $n$, the player whose turn is chooses a prime divisor $p$ of $n$ and writes the numbers $n+p$. In the board, is written at the start number $2$ and Anna plays first. The game is won by whom who shall be first able to write a number bigger or equal to $31$. Find who player has a winning strategy, that is who may writing the appropriate numbers may win the game no matter how the other player plays.

2000 Harvard-MIT Mathematics Tournament, 3

Tags:
Five students take a test on which any integer score from $0$ to $100$ inclusive is possible. What is the largest possible difference between the median and the mean of the scores?

2014 ASDAN Math Tournament, 5

Consider a triangle $ABC$ with $AB=4$, $BC=3$, and $AC=2$. Let $D$ be the midpoint of line $BC$. Find the length of $AD$.

2005 AIME Problems, 10

Given that $O$ is a regular octahedron, that $C$ is the cube whose vertices are the centers of the faces of $O$, and that the ratio of the volume of $O$ to that of $C$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers, find $m+n$.

2013 Princeton University Math Competition, 5

Suppose you have a sphere tangent to the $xy$-plane with its center having positive $z$-coordinate. If it is projected from a point $P=(0,b,a)$ to the $xy$-plane, it gives the conic section $y=x^2$. If we write $a=\tfrac pq$ where $p,q$ are integers, find $p+q$.

2002 Bundeswettbewerb Mathematik, 4

Tags: geometry
Consider a $12$-gon with sidelengths $1$, $2$, $3$, $4$, ..., $12$. Prove that there are three consecutive sides in this $12$-gon, whose lengths have a sum $> 20$.

2017 Austria Beginners' Competition, 2

Tags: geometry
. In the isosceles triangle $ABC$ with $AC = BC$ we denote by $D$ the foot of the altitude through $C$. The midpoint of $CD$ is denoted by $M$. The line $BM$ intersects $AC$ in $E$. Prove that the length of $AC$ is three times that of $CE$.