Found problems: 85335
2021 JHMT HS, 4
Let $a_1,a_2,a_3,\dots$ be a sequence of numbers such that $a_{n+2} = 2a_n$ for all integers $n.$ Suppose $a_1 = 1,$ $a_2 = 3,$
\[ \sum_{n=1}^{2021} a_{2n} = c, \quad \text{and} \quad \sum\limits_{n=1}^{2021} a_{2n-1} = b. \]
Then $c - b + \tfrac{c-b}{b}$ can be written in the form $x^y,$ where $x$ and $y$ are integers such that $x$ is as small as possible. Find $x + y.$
2018 Yasinsky Geometry Olympiad, 6
In the quadrilateral $ABCD$, the points $E, F$, and $K$ are midpoints of the $AB, BC, AD$ respectively. Known that $KE \perp AB, K F \perp BC$, and the angle $\angle ABC = 118^o$. Find $ \angle ACD$ (in degrees).
1981 Austrian-Polish Competition, 4
Let $n \ge 3$ cells be arranged into a circle. Each cell can be occupied by $0$ or $1$. The following operation is admissible: Choose any cell $C$ occupied by a $1$, change it into a $0$ and simultaneously reverse the entries in the two cells adjacent to $C$ (so that $x,y$ become $1 - x$, $1 - y$). Initially, there is a $1$ in one cell and zeros elsewhere. For which values of $n$ is it possible to obtain zeros in all cells in a finite number of admissible steps?
2019 Regional Olympiad of Mexico Southeast, 6
Let $p\geq 3$ a prime number, $a$ and $b$ integers such that $\gcd(a, b)=1$. Let $n$ a natural number such that $p$ divides $a^{2^n}+b^{2^n}$, prove that $2^{n+1}$ divides $p-1$.
1988 National High School Mathematics League, 1
We have three functions. The first one is $y=\phi(x)$. The second one is the inverse function of the first one. The figure of the third funcion is symmetrical to the second one about line $x+y=0$. Then, the third function is
$\text{(A)}y=-\phi(x)\qquad\text{(B)}y=-\phi(-x)\qquad\text{(C)}y=-\phi^{-1}(x)\qquad\text{(D)}y=-\phi^{-1}(x)$
2014 Contests, 3
Let $ABC$ be a triangle with $AB < AC$ and incentre $I$. Let $E$ be the point on the side $AC$ such that $AE = AB$. Let $G$ be the point on the line $EI$ such that $\angle IBG = \angle CBA$ and such that $E$ and $G$ lie on opposite sides of $I$.
Prove that the line $AI$, the line perpendicular to $AE$ at $E$, and the bisector of the angle $\angle BGI$ are concurrent.
2018 IMC, 6
Let $k$ be a positive integer. Find the smallest positive integer $n$ for which there exists $k$ nonzero vectors $v_1,v_2,…,v_k$ in $\mathbb{R}^n$ such that for every pair $i,j$ of indices with $|i-j|>1$ the vectors $v_i$ and $v_j$ are orthogonal.
[i]Proposed by Alexey Balitskiy, Moscow Institute of Physics and Technology and M.I.T.[/i]
2009 Today's Calculation Of Integral, 477
Suppose that $ P_1(x)\equal{}\frac{d}{dx}(x^2\minus{}1),\ P_2(x)\equal{}\frac{d^2}{dx^2}(x^2\minus{}1)^2,\ P_3(x)\equal{}\frac{d^3}{dx^3}(x^2\minus{}1)^3$.
Find all possible values for which $ \int_{\minus{}1}^1 P_k(x)P_l(x)\ dx\ (k\equal{}1,\ 2,\ 3,\ l\equal{}1,\ 2,\ 3)$ can be valued.
2014 Saint Petersburg Mathematical Olympiad, 2
There are $40$ points on the two parallel lines. We divide it to pairs, such that line segments, that connects point in pair, do not intersect each other ( endpoint from one segment cannot lies on another segment). Prove, that number of ways to do it is less than $3^{39}$
2010 CHMMC Fall, 7
Art and Kimberly build flagpoles on a level ground with respective heights $10$ m and $15$ m, separated by a distance of $5$ m. Kimberly wants to move her flagpole closer to Art’s, but she can only doing so in the following manner:
1. Run a straight wire from the top of her flagpole to the bottom of Art’s.
2. Run a straight wire from the top of Art’s flagpole to the bottom of hers.
3. Build the flagpole to the point where the wires meet.
If Kimberly keeps moving her flagpole in this way, compute the number of flagpoles she will build whose heights are $1$ m or greater (not counting her original $15$ m flagpole).
2010 South East Mathematical Olympiad, 4
$A_1,A_2,\cdots,A_8$ are fixed points on a circle. Determine the smallest positive integer $n$ such that among any $n$ triangles with these eight points as vertices, two of them will have a common side.
1966 All Russian Mathematical Olympiad, 072
There is exactly one astronomer on every planet of a certain system. He watches the closest planet. The number of the planets is odd and all of the distances are different. Prove that there one planet being not watched.
2014 May Olympiad, 3
There are nine boxes. In the first there is $1$ stone, in the second there are $2$ stones, in the third there are $3$ stones, and thus continuing, in the eighth there are $8$ stones and in the ninth there are $9$ stones. The allowed operation is to remove the same number of stones from two different boxes and place them in a third box. The goal is that all stones are in a single box. Describe how to do it with the minimum number of operations allowed.
Explain why it is impossible to achieve it with fewer operations.
2015 Switzerland - Final Round, 10
Find the largest natural number $n$ such that for all real numbers $a, b, c, d$ the following holds:
$$(n + 2)\sqrt{a^2 + b^2} + (n + 1)\sqrt{a^2 + c^2} + (n + 1)\sqrt{a^2 + d^2} \ge n(a + b + c + d)$$
MathLinks Contest 7th, 3.3
Find the greatest positive real number $ k$ such that the inequality below holds for any positive real numbers $ a,b,c$:
\[ \frac ab \plus{} \frac bc \plus{} \frac ca \minus{} 3 \geq k \left( \frac a{b \plus{} c} \plus{} \frac b{c \plus{} a} \plus{} \frac c{a \plus{} b} \minus{} \frac 32 \right).
\]
2020 Jozsef Wildt International Math Competition, W44
We consider a function $f:\mathbb R\to\mathbb R$ such that
$$f(x+y)+f(xy-1)=f(x)f(y)+f(x)+f(y)+1$$
for each $x,y\in\mathbb R$.
i) Calculate $f(0)$ and $f(-1)$.
ii) Prove that $f$ is an even function.
iii) Give an example of such a function.
iv) Find all monotone functions with the above property.
[i]Proposed by Mihály Bencze and Marius Drăgan[/i]
1972 Canada National Olympiad, 4
Describe a construction of quadrilateral $ABCD$ given:
(i) the lengths of all four sides;
(ii) that $AB$ and $CD$ are parallel;
(iii) that $BC$ and $DA$ do not intersect.
1999 Abels Math Contest (Norwegian MO), 4
For every nonempty subset $R$ of $S = \{1,2,...,10\}$, we define the alternating sum $A(R)$ as follows:
If $r_1,r_2,...,r_k$ are the elements of $R$ in the increasing order, then $A(R) = r_k -r_{k-1} +r_{k-2}- ... +(-1)^{k-1}r_1$.
(a) Is it possible to partition $S$ into two sets having the same alternating sum?
(b) Determine the sum $\sum_{R} A(R)$, where $R$ runs over all nonempty subsets of $S$.
2007 Moldova Team Selection Test, 3
Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid.
Prove that these three Euler lines pass through one common point.
[i]Remark.[/i] The Fermat point $F$ is also known as the [b]first Fermat point[/b] or the [b]first Toricelli point[/b] of triangle $ABC$.
[i]Floor van Lamoen[/i]
2006 Oral Moscow Geometry Olympiad, 6
Given triangle $ABC$ and points $P$. Let $A_1,B_1,C_1$ be the second points of intersection of straight lines $AP, BP, CP$ with the circumscribed circle of $ABC$. Let points $A_2, B_2, C_2$ be symmetric to $A_1,B_1,C_1$ wrt $BC,CA,AB$, respectively. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ are similar.
(A. Zaslavsky)
1989 IMO Shortlist, 1
$ ABC$ is a triangle, the bisector of angle $ A$ meets the circumcircle of triangle $ ABC$ in $ A_1$, points $ B_1$ and $ C_1$ are defined similarly. Let $ AA_1$ meet the lines that bisect the two external angles at $ B$ and $ C$ in $ A_0$. Define $ B_0$ and $ C_0$ similarly. Prove that the area of triangle $ A_0B_0C_0 \equal{} 2 \cdot$ area of hexagon $ AC_1BA_1CB_1 \geq 4 \cdot$ area of triangle $ ABC$.
2014 PUMaC Team, 13
There is a right triangle $\triangle ABC$ in which $\angle A$ is the right angle. On side $AB$, there are three points $X$, $Y$, and $Z$ that satisfy $\angle ACX=\angle XCY=\angle YCZ=\angle ZCB$ and $BZ=2AX$. The smallest angle of $\triangle ABC$ is $\tfrac ab$ degrees, where $a,b$ are positive integers such that $\gcd(a,b)=1$. Find $a+b$.
2015 Indonesia MO Shortlist, G2
Two circles that are not equal are tangent externally at point $R$. Suppose point $P$ is the intersection of the external common tangents of the two circles. Let $A$ and $B$ are two points on different circles so that $RA$ is perpendicular to $RB$. Show that the line $AB$ passes through $P$.
2004 Estonia National Olympiad, 5
Real numbers $a, b$ and $c$ satisfy $$\begin{cases} a^2 + b^2 + c^2 = 1 \\ a^3 + b^3 + c^3 = 1. \end{cases}$$ Find $a + b + c$.
1981 AMC 12/AHSME, 19
In $\triangle ABC$, $M$ is the midpoint of side $BC$, $AN$ bisects $\angle BAC$, $BN\perp AN$ and $\theta$ is the measure of $\angle BAC$. If sides $AB$ and $AC$ have lengths $14$ and $19$, respectively, then length $MN$ equals
[asy]
size(230);
defaultpen(linewidth(0.7)+fontsize(10));
pair B=origin, A=14*dir(36), C=intersectionpoint(B--(9001,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b);
draw(N--B--A--N--M--C--A^^B--M);
markscalefactor=0.1;
draw(rightanglemark(B,N,A));
pair point=N;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$M$", M, S);
label("$N$", N, dir(30));
label("$19$", (A+C)/2, dir(A--C)*dir(90));
label("$14$", (A+B)/2, dir(A--B)*dir(270));
[/asy]
$\displaystyle \text{(A)} \ 2 \qquad \text{(B)} \ \frac{5}{2} \qquad \text{(C)} \ \frac{5}{2} - \sin \theta \qquad \text{(D)} \ \frac{5}{2} - \frac{1}{2} \sin \theta \qquad \text{(E)} \ \frac{5}{2} - \frac{1}{2} \sin \left(\frac{1}{2} \theta\right)$