Found problems: 85335
1983 AIME Problems, 11
The solid shown has a square base of side length $s$. The upper edge is parallel to the base and has length $2s$. All other edges have length $s$. Given that $s = 6 \sqrt{2}$, what is the volume of the solid?
[asy]
import three;
size(170);
pathpen = black+linewidth(0.65);
pointpen = black;
currentprojection = perspective(30,-20,10);
real s = 6 * 2^.5;
triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6);
draw(F--B--C--F--E--A--B);
draw(A--D--E, dashed);
draw(D--C, dashed);
label("$2s$", (s/2, s/2, 6), N);
label("$s$", (s/2, 0, 0), SW);
[/asy]
2019 Belarus Team Selection Test, 6.3
Let $n \ge 2018$ be an integer, and let $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ be pairwise distinct positive integers not exceeding $5n$. Suppose that the sequence
\[ \frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n} \]
forms an arithmetic progression. Prove that the terms of the sequence are equal.
2017 Balkan MO Shortlist, N5
Given a positive odd integer $n$, show that the arithmetic mean of fractional parts $\{\frac{k^{2n}}{p}\}, k=1,..., \frac{p-1}{2}$ is the same for infinitely many primes $p$ .
2020 LMT Spring, 17
Let $ABC$ be a triangle such that $AB = 26, AC = 30,$ and $BC = 28$. Let $C'$ and $B'$ be the reflections of the circumcenter $O$ over $AB$ and $AC$, respectively. The length of the portion of line segment $B'C'$ inside triangle $ABC$ can be written as $\frac{p}{q}$, where $p,q$ are relatively prime positive integers. Compute $p+q$.
III Soros Olympiad 1996 - 97 (Russia), 10.2
It is known that the equation $x^3 + px^2 + q = 0$ where $q$ is non-zero, has three different integer roots, the absolute values of two of which are prime numbers. Find the roots of this equation.
1969 Canada National Olympiad, 10
Let $ABC$ be the right-angled isosceles triangle whose equal sides have length 1. $P$ is a point on the hypotenuse, and the feet of the perpendiculars from $P$ to the other sides are $Q$ and $R$. Consider the areas of the triangles $APQ$ and $PBR$, and the area of the rectangle $QCRP$. Prove that regardless of how $P$ is chosen, the largest of these three areas is at least $2/9$.
2011 Federal Competition For Advanced Students, Part 2, 3
Two circles $k_1$ and $k_2$ with radii $r_1$ and $r_2$ touch each outside at point $Q$. The other endpoints of the diameters through $Q$ are $P$ on $k_1$ and $R$ on $k_2$.
We choose two points $A$ and $B$, one on each of the arcs $PQ$ of $k_1$. ($PBQA$ is a convex quadrangle.)
Further, let $C$ be the second point of intersection of the line $AQ$ with $k_2$ and let $D$ be the second point of intersection of the line $BQ$ with $k_2$.
The lines $PB$ and $RC$ intersect in $U$ and the lines $PA$ and $RD$ intersect in $V$ .
Show that there is a point $Z$ that lies on all of these lines $UV$.
2019 Cono Sur Olympiad, 2
We say that a positive integer $M$ with $2n$ digits is [i]hypersquared[/i] if the following three conditions are met:
[list]
[*]$M$ is a perfect square.
[*]The number formed by the first $n$ digits of $M$ is a perfect square.
[*]The number formed by the last $n$ digits of $M$ is a perfect square and has exactly $n$ digits (its first digit is not zero).
[/list]
Find a hypersquared number with $2000$ digits.
2020 AIME Problems, 14
For real number $x$ let $\lfloor x\rfloor$ be the greatest integer less than or equal to $x$, and define $\{x\}=x-\lfloor x\rfloor$ to be the fractional part of $x$. For example, $\{3\}=0$ and $\{4.56\}=0.56$. Define $f(x)=x\{x\}$, and let $N$ be the number of real-valued solutions to the equation $f(f(f(x)))=17$ for $0\leq x\leq 2020$. Find the remainder when $N$ is divided by $1000$.
1992 Romania Team Selection Test, 10
In a tetrahedron $VABC$, let $I$ be the incenter and $A',B',C'$ be arbitrary points on the edges $AV,BV,CV$, and let $S_a,S_b,S_c,S_v$ be the areas of triangles $VBC,VAC,VAB,ABC$, respectively. Show that points $A',B',C',I$ are coplanar if and only if $\frac{AA'}{A'V}S_a +\frac{BB'}{B'V}S_b +\frac{CC'}{C'V}S_c = S_v$
2009 Junior Balkan Team Selection Tests - Moldova, 7
In triangle $ABC$ there are points $D\in(AC)$ and $F\in(AB)$ such that $AD=AB$ and line $BC$ splits the segment $[CF]$ in half. Prove that $BF=CD$.
2020 Online Math Open Problems, 6
Let $x,y,$ and $z$ be nonnegative real numbers with $x+y+z=120$. Compute the largest possible value of the median of the three numbers $2x+y,2y+z,$ and $2z+x$.
[i]Proposed by Ankit Bisain[/i]
2018 Macedonia National Olympiad, Problem 3
Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:$$f(\max \left\{ x, y \right\} + \min \left\{ f(x), f(y) \right\}) = x+y $$ for all real $x,y \in \mathbb{R}$
[i]Proposed by Nikola Velov[/i]
2003 SNSB Admission, 2
Let be a natural number $ n, $ denote with $ C $ the square in the complex plane whose vertices are the affixes of $ 2n\pi\left( \pm 1\pm i \right) , $ and consider the set
$$ \Lambda = \left\{ \lambda\in\text{Hol} \left[ \mathbb{C}\longrightarrow\mathbb{C} \right] |z\in\mathbb{C}\implies |\lambda (z)|\le e^{|\text{Im}(z)|} \right\} $$
Prove the following implications.
[b]a)[/b] $ \exists \alpha\in\mathbb{R}_{>0}\quad \forall z\in\partial C\quad \left| \cos z \right|\ge\alpha e^{|\text{Im}(z)|} $
[b]b)[/b] $ \forall f\in\Lambda\quad\frac{1}{2\pi i}\int_{\partial C} \frac{f(z)}{z^2\cos z} dz=f'(0)+\frac{4}{\pi^2}\sum_{p=-2n}^{2n-1} \frac{(-1)^{p+1} f(z-p)}{(1+2p)^2} $
[b]c)[/b] $ \forall f\in\Lambda\quad \sum_{p\in\mathbb{Z}}\frac{(-1)^pf\left( \frac{(1+2p)\pi}{2} \right)}{(1+2p)^2} =\frac{\pi^2 f'(0)}{4} $
2016 IFYM, Sozopol, 7
We are given a ruler with two marks at a distance 1. With its help we can do all possible constructions as with a ruler with no measurements, including one more: If there is a line $l$ and point $A$ on $l$, then we can construct points $P_1,P_2\in l$ for which $AP_1=AP_2=1$. By using this ruler, construct a perpendicular from a given point to a given line.
2016 Auckland Mathematical Olympiad, 3
In two weeks three cows eat all the grass on two hectares of land, together with all the grass that regrows there during the two weeks. In four weeks, two cows eat all the grass on two hectares of land, together with all the grass that regrows there during the four weeks.
How many cows will eat all the grass on six hectares of land in six weeks, together with all the grass that regrows there over the six weeks?
(Assume:
$\bullet$ the quantity of grass on each hectare is the same when the cows begin to graze,
$\bullet$ the rate of growth of the grass is uniform during the time of grazing,
$\bullet$ the cows eat the same amount of grass each week.)
1988 IMO Longlists, 42
Show that the solution set of the inequality
\[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4}
\]
is a union of disjoint intervals, the sum of whose length is 1988.
2021 China Team Selection Test, 4
Find all functions $f: \mathbb{Z}^+\rightarrow \mathbb{Z}^+$ such that for all positive integers $m,n$ with $m\ge n$, $$f(m\varphi(n^3)) = f(m)\cdot \varphi(n^3).$$
Here $\varphi(n)$ denotes the number of positive integers coprime to $n$ and not exceeding $n$.
2019 Thailand TST, 2
A point $T$ is chosen inside a triangle $ABC$. Let $A_1$, $B_1$, and $C_1$ be the reflections of $T$ in $BC$, $CA$, and $AB$, respectively. Let $\Omega$ be the circumcircle of the triangle $A_1B_1C_1$. The lines $A_1T$, $B_1T$, and $C_1T$ meet $\Omega$ again at $A_2$, $B_2$, and $C_2$, respectively. Prove that the lines $AA_2$, $BB_2$, and $CC_2$ are concurrent on $\Omega$.
[i]Proposed by Mongolia[/i]
2002 Moldova Team Selection Test, 1
Prove that for every positive integer n, there exists a polynomial p(x) with integer coefficients such that p(1), p(2),..., p(n-1), p(n) are distinct powers of 2.
2011 China Western Mathematical Olympiad, 3
Let $n \geq 2$ be a given integer
$a)$ Prove that one can arrange all the subsets of the set $\{1,2... ,n\}$ as a sequence of subsets $A_{1}, A_{2},\cdots , A_{2^{n}}$, such that $|A_{i+1}| = |A_{i}| + 1$ or $|A_{i}| - 1$ where $i = 1,2,3,\cdots , 2^{n}$ and $A_{2^{n} + 1} = A_{1}$
$b)$ Determine all possible values of the sum $\sum \limits_{i = 1}^{2^n} (-1)^{i}S(A_{i})$ where $S(A_{i})$ denotes the sum of all elements in $A_{i}$ and $S(\emptyset) = 0$, for any subset sequence $A_{1},A_{2},\cdots ,A_{2^n}$ satisfying the condition in $a)$
2007 Nicolae Păun, 1
Let be nine nonzero decimal digits $ a_1,a_2,a_3,b_1,b_2,b_3,c_1,c_2,c_3 $ chosen such that the polynom
$$ \left( 100a_1+10a_2+a_3 \right) X^2 +\left( 100b_1+10b_2+b_3 \right) X +100c_1+10c_2+c_3 $$
admits at least a real solution.
Prove that at least one of the polynoms $ a_iX^2+b_iX+c_i\quad (i\in\{1,2,3\}) $ admits at least a real solution.
[i]Nicolae Mușuroia[/i]
2021 AMC 10 Fall, 15
Isosceles triangle $ABC$ has $AB = AC = 3\sqrt6$, and a circle with radius $5\sqrt2$ is tangent to line $AB$ at $B$ and to line $AC$ at $C$. What is the area of the circle that passes through vertices $A$, $B$, and $C?$
$\textbf{(A) }24\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }26\pi\qquad\textbf{(D) }27\pi\qquad\textbf{(E) }28\pi$
2009 Poland - Second Round, 1
Let $a_1\ge a_2\ge \ldots \ge a_n>0$ be $n$ reals. Prove the inequality
\[a_1a_2\ldots a_{n-1}+(2a_2-a_1)(2a_3-a_2)\ldots (2a_n-a_{n-1})\ge 2a_2a_3\ldots a_n\]
2021 239 Open Mathematical Olympiad, 6
The alphabet of the tribe AAB consists of the only letters $A$ and $B$. However, if you insert or delete the combination $AAA$ or $BBB$ for any words, the meaning of the word will not change. In addition, if $AB$ is replaced with $BBAA$, or vice versa, the meaning of the word doesn't change. The same holds for $BA$ and $AABB$. Is it true that $AB$ and $BA$ have the same meaning?