This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

ICMC 6, 5

A clock has an hour, minute, and second hand, all of length $1$. Let $T$ be the triangle formed by the ends of these hands. A time of day is chosen uniformly at random. What is the expected value of the area of $T$? [i]Proposed by Dylan Toh[/i]

1995 Taiwan National Olympiad, 2

Given a sequence of eight integers $x_{1},x_{2},...,x_{8}$ in a single operation one replaces these numbers with $|x_{1}-x_{2}|,|x_{2}-x_{3}|,...,|x_{8}-x_{1}|$. Find all the eight-term sequences of integers which reduce to a sequence with all the terms equal after finitely many single operations.

2004 District Olympiad, 2

a) Let $x_1,x_2,x_3,y_1,y_2,y_3\in \mathbb{R}$ and $a_{ij}=\sin(x_i-y_j),\ i,j=\overline{1,3}$ and $A=(a_{ij})\in \mathcal{M}_3$ Prove that $\det A=0$. b) Let $z_1,z_2,\ldots,z_{2n}\in \mathbb{C}^*,\ n\ge 3$ such that $|z_1|=|z_2|=\ldots=|z_{n+3}|$ and $\arg z_1\ge \arg z_2\ge \ldots\ge \arg(z_{n+3})$. If $b_{ij}=|z_i-z_{j+n}|,\ i,j=\overline{1,n}$ and $B=(b_{ij})\in \mathcal{M}_n$, prove that $\det B=0$.

2003 Kurschak Competition, 2

Prove that if a graph $\mathcal{G}$ on $n\ge 3$ vertices has a unique $3$-coloring, then $\mathcal{G}$ has at least $2n-3$ edges. (A graph is $3$-colorable when there exists a coloring of its vertices with $3$ colors such that no two vertices of the same color are connected by an edge. The graph can be $3$-colored uniquely if there do not exist vertices $u$ and $v$ of the graph that are painted different colors in one $3$-coloring, yet are colored the same in another.)

1986 AMC 8, 14

Tags: inequalities
If $ 200 \le a \le 400$ and $ 600 \le b \le 1200$, then the largest value of the quotient $ \frac{b}{a}$ is \[ \textbf{(A)}\ \frac{3}{2} \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 300 \qquad \textbf{(E)}\ 600 \qquad \]

2011 China Team Selection Test, 1

In $\triangle ABC$ we have $BC>CA>AB$. The nine point circle is tangent to the incircle, $A$-excircle, $B$-excircle and $C$-excircle at the points $T,T_A,T_B,T_C$ respectively. Prove that the segments $TT_B$ and lines $T_AT_C$ intersect each other.

2006 Tuymaada Olympiad, 3

A line $d$ is given in the plane. Let $B\in d$ and $A$ another point, not on $d$, and such that $AB$ is not perpendicular on $d$. Let $\omega$ be a variable circle touching $d$ at $B$ and letting $A$ outside, and $X$ and $Y$ the points on $\omega$ such that $AX$ and $AY$ are tangent to the circle. Prove that the line $XY$ passes through a fixed point. [i]Proposed by F. Bakharev [/i]

2022 Dutch BxMO TST, 3

Find all pairs $(p, q)$ of prime numbers such that $$p(p^2 -p - 1) = q(2q + 3).$$

2020 CMIMC Team, 6

Tags: team
Misha is currently taking a Complexity Theory exam, but he seems to have forgotten a lot of the material! In the question, he is asked to fill in the following boxes with $\subseteq$ and $\subsetneq$ to identify the relationship between different complexity classes: $$\mathsf{NL}\ \fbox{\phantom{tt}}\ \mathsf{P}\ \fbox{\phantom{tt}}\ \mathsf{NP}\ \fbox{\phantom{tt}}\ \mathsf{PH}\ \fbox{\phantom{tt}}\ \mathsf{PSPACE}\ \fbox{\phantom{tt}}\ \mathsf {EXP}$$ and $$\mathsf{coNL}\ \fbox{\phantom{tt}}\ \mathsf{P}\ \fbox{\phantom{tt}}\ \mathsf{coNP}\ \fbox{\phantom{tt}}\ \mathsf{PH}$$ Luckily, he remembers that $\mathsf{P} \neq \mathsf{EXP}$, $\mathsf{NL} \neq \mathsf{PSPACE}$, $\mathsf{coNL} \neq \mathsf{PSPACE}$, and $\mathsf{NP} \neq \mathsf{coNP}\implies \mathsf{P}\neq \mathsf{NP} \land \mathsf{P}\neq \mathsf{coNP}$. How many ways are there for him to fill in the boxes so as not to contradict what he remembers?

2012 Greece Team Selection Test, 2

Given is an acute triangle $ABC$ $\left(AB<AC<BC\right)$,inscribed in circle $c(O,R)$.The perpendicular bisector of the angle bisector $AD$ $\left(D\in BC\right)$ intersects $c$ at $K,L$ ($K$ lies on the small arc $\overarc{AB}$).The circle $c_1(K,KA)$ intersects $c$ at $T$ and the circle $c_2(L,LA)$ intersects $c$ at $S$.Prove that $\angle{BAT}=\angle{CAS}$. [hide=Diagram][asy]import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -6.94236331697463, xmax = 15.849400903703716, ymin = -5.002235438802758, ymax = 7.893104843949444; /* image dimensions */ pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); pen qqqqtt = rgb(0.,0.,0.2); draw((1.8318261909633622,3.572783369254345)--(0.,0.)--(6.,0.)--cycle, aqaqaq); draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-117.14497824050169,-101.88970202103212)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt); draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-55.85706977865775,-40.60179355918817)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt); /* draw figures */ draw((1.8318261909633622,3.572783369254345)--(0.,0.), uququq); draw((0.,0.)--(6.,0.), uququq); draw((6.,0.)--(1.8318261909633622,3.572783369254345), uququq); draw(circle((3.,0.7178452373968209), 3.0846882800136055)); draw((2.5345020274407277,0.)--(1.8318261909633622,3.572783369254345)); draw(circle((-0.01850947366601585,1.3533783539547308), 2.889550258039566)); draw(circle((5.553011501106743,2.4491551634556963), 3.887127532933951)); draw((-0.01850947366601585,1.3533783539547308)--(5.553011501106743,2.4491551634556963), linetype("2 2")); draw((1.8318261909633622,3.572783369254345)--(0.7798408954511686,-1.423695174396108)); draw((1.8318261909633622,3.572783369254345)--(5.22015910454883,-1.4236951743961088)); /* dots and labels */ dot((1.8318261909633622,3.572783369254345),linewidth(3.pt) + dotstyle); label("$A$", (1.5831274347452782,3.951671933606579), NE * labelscalefactor); dot((0.,0.),linewidth(3.pt) + dotstyle); label("$B$", (-0.6,0.05), NE * labelscalefactor); dot((6.,0.),linewidth(3.pt) + dotstyle); label("$C$", (6.188606107156787,0.07450151636712989), NE * labelscalefactor); dot((2.5345020274407277,0.),linewidth(3.pt) + dotstyle); label("$D$", (2.3,-0.7), NE * labelscalefactor); dot((-0.01850947366601585,1.3533783539547308),linewidth(3.pt) + dotstyle); label("$K$", (-0.3447473583572136,1.6382221818835927), NE * labelscalefactor); dot((5.553011501106743,2.4491551634556963),linewidth(3.pt) + dotstyle); label("$L$", (5.631664500260511,2.580738747400365), NE * labelscalefactor); dot((0.7798408954511686,-1.423695174396108),linewidth(3.pt) + dotstyle); label("$T$", (0.5977692071595602,-1.960477431907719), NE * labelscalefactor); dot((5.22015910454883,-1.4236951743961088),linewidth(3.pt) + dotstyle); label("$S$", (5.160406217502124,-1.8747941077698307), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/hide]

1994 Swedish Mathematical Competition, 5

The polynomial $x^k + a_1x^{k-1} + a_2x^{k-2} +... + a_k$ has $k$ distinct real roots. Show that $a_1^2 > \frac{2ka_2}{k-1}$.

2006 Australia National Olympiad, 2

Let $f$ be a function defined on the positive integers, taking positive integral values, such that $f(a)f(b) = f(ab)$ for all positive integers $a$ and $b$, $f(a) < f(b)$ if $a < b$, $f(3) \geq 7$. Find the smallest possible value of $f(3)$.

2009 IMS, 7

Let $ G$ be a group such that $ G'$ is abelian and each normal and abelian subgroup of $ G$ is finite. Prove that $ G$ is finite.

MBMT Team Rounds, 2020.8

Tags:
Let $\triangle ABC$ be inscribed in circle $O$ with $\angle ABC = 36^\circ$. $D$ and $E$ are on the circle such that $\overline{AD}$ and $\overline{CE}$ are diameters of circle $O$. List all possible positive values of $\angle DBE$ in degrees in order from least to greatest. [i]Proposed by Ambrose Yang[/i]

2019 Iran MO (3rd Round), 1

Given a cyclic quadrilateral $ABCD$. There is a point $P$ on side $BC$ such that $\angle PAB=\angle PDC=90^\circ$. The medians of vertexes $A$ and $D$ in triangles $PAB$ and $PDC$ meet at $K$ and the bisectors of $\angle PAB$ and $\angle PDC$ meet at $L$. Prove that $KL\perp BC$.

2013 ELMO Shortlist, 3

In $\triangle ABC$, a point $D$ lies on line $BC$. The circumcircle of $ABD$ meets $AC$ at $F$ (other than $A$), and the circumcircle of $ADC$ meets $AB$ at $E$ (other than $A$). Prove that as $D$ varies, the circumcircle of $AEF$ always passes through a fixed point other than $A$, and that this point lies on the median from $A$ to $BC$. [i]Proposed by Allen Liu[/i]

2012 Math Prize For Girls Problems, 8

Tags:
Suppose that $x$, $y$, and $z$ are real numbers such that $x + y + z = 3$ and $x^2 + y^2 + z^2 = 6$. What is the largest possible value of $z$?

2012 BMT Spring, 10

Tags:
You are at one vertex of a equilateral triangle with side length $ 1 $. All of the edges of the equilateral triangle will reflect the laser beam perfectly (angle of incidence is equal to angle of reflection). Given that the laser beam bounces off exactly $ 137 $ edges and returns to the original vertex without touching any other vertices, let $ M $ be the maximum possible distance the beam could have traveled, and $ m $ be the minimum possible distance the beam could have traveled. Find $ M^2 - m^2 $.

2008 ITest, 15

How many four-digit multiples of $8$ are greater than $2008$?

2007 Stanford Mathematics Tournament, 15

Evaluate $\int_{0}^{\infty}\frac{\tan^{-1}(\pi x)-\tan^{-1}x}{x}dx$

2016 China Team Selection Test, 3

In cyclic quadrilateral $ABCD$, $AB>BC$, $AD>DC$, $I,J$ are the incenters of $\triangle ABC$,$\triangle ADC$ respectively. The circle with diameter $AC$ meets segment $IB$ at $X$, and the extension of $JD$ at $Y$. Prove that if the four points $B,I,J,D$ are concyclic, then $X,Y$ are the reflections of each other across $AC$.

2005 Slovenia National Olympiad, Problem 1

Find all positive numbers $x$ such that $20\{x\}+0.5\lfloor x\rfloor = 2005$.

2022 ISI Entrance Examination, 3

Consider the parabola $C: y^{2}=4 x$ and the straight line $L: y=x+2$. Let $P$ be a variable point on $L$. Draw the two tangents from $P$ to $C$ and let $Q_{1}$ and $Q_{2}$ denote the two points of contact on $C$. Let $Q$ be the mid-point of the line segment joining $Q_{1}$ and $Q_{2}$. Find the locus of $Q$ as $P$ moves along $L$.

2017 CMI B.Sc. Entrance Exam, 1

Answer the following questions : [b](a)[/b] Evaluate $~~\lim_{x\to 0^{+}} \Big(x^{x^x}-x^x\Big)$ [b](b)[/b] Let $A=\frac{2\pi}{9}$, i.e. $40$ degrees. Calculate the following $$1+\cos A+\cos 2A+\cos 4A+\cos 5A+\cos 7A+\cos 8A$$ [b](c)[/b] Find the number of solutions to $$e^x=\frac{x}{2017}+1$$

2018 Adygea Teachers' Geometry Olympiad, 4

Given a cube $ABCDA_1B_1C_1D_1$ with edge $5$. On the edge $BB_1$ of the cube , point $K$ such thath $BK=4$. a) Construct a cube section with the plane $a$ passing through the points $K$ and $C_1$ parallel to the diagonal $BD_1$. b) Find the angle between the plane $a$ and the plane $BB_1C_1$.