This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

VI Soros Olympiad 1999 - 2000 (Russia), 11.6

Let $P(x)$ be a polynomial with integer coefficients. It is known that the number $\sqrt2+\sqrt3$ is its root. Prove that the number $\sqrt2-\sqrt3$ is also its root.

2021 USEMO, 2

Find all integers $n\ge1$ such that $2^n-1$ has exactly $n$ positive integer divisors. [i]Proposed by Ankan Bhattacharya [/i]

1985 All Soviet Union Mathematical Olympiad, 404

The convex pentagon $ABCDE$ was drawn in the plane. $A_1$ was symmetric to $A$ with respect to $B$. $B_1$ was symmetric to $B$ with respect to $C$. $C_1$ was symmetric to $C$ with respect to $D$. $D_1$ was symmetric to $D$ with respect to $E$. $E_1$ was symmetric to $E$ with respect to $A$. How is it possible to restore the initial pentagon with the compasses and ruler, knowing $A_1,B_1,C_1,D_1,E_1$ points?

2024 IMC, 9

A matrix $A=(a_{ij})$ is called [i]nice[/i], if it has the following properties: (i) the set of all entries of $A$ is $\{1,2,\dots,2t\}$ for some integer $t$; (ii) the entries are non-decreasing in every row and in every column: $a_{i,j} \le a_{i,j+1}$ and $a_{i,j} \le a_{i+1,j}$; (iii) equal entries can appear only in the same row or the same column: if $a_{i,j}=a_{k,\ell}$, then either $i=k$ or $j=\ell$; (iv) for each $s=1,2,\dots,2t-1$, there exist $i \ne k$ and $j \ne \ell$ such that $a_{i,j}=s$ and $a_{k,\ell}=s+1$. Prove that for any positive integers $m$ and $n$, the number of nice $m \times n$ matrixes is even. For example, the only two nice $2 \times 3$ matrices are $\begin{pmatrix} 1 & 1 & 1\\2 & 2 & 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 & 3\\2 & 4 & 4 \end{pmatrix}$.

1979 Polish MO Finals, 2

Prove that the four lines, joining the vertices of a tetrahedron with the incenters of the opposite faces, have a common point if and only if the three products of the lengths of opposite sides are equal.

2015 239 Open Mathematical Olympiad, 5

Edges of a complete graph with $2m$ vertices are properly colored with $2m-1$ colors. It turned out that for any two colors all the edges colored in one of these two colors can be described as union of several $4$-cycles. Prove that $m$ is a power of $2$.

2017 Vietnamese Southern Summer School contest, Problem 2

Let $a,b,c$ be the positive real numbers satisfying $a^2+b^2+c^2=3$. Prove that: $$\frac{a}{b(a+c)}+\frac{b}{c(b+a)}+\frac{c}{a(c+b)}\geq \frac{3}{2}.$$

2022 Princeton University Math Competition, A6 / B8

Tags: geometry
Triangle $\vartriangle ABC$ has sidelengths $AB = 10$, $AC = 14$, and, $BC = 16$. Circle $\omega_1$ is tangent to rays $\overrightarrow{AB}$, $\overrightarrow{AC}$ and passes through $B$. Circle $\omega_2$ is tangent to rays $\overrightarrow{AB}$, $\overrightarrow{AC}$ and passes through $C$. Let $\omega_1$, $\omega_2$ intersect at points $X, Y$ . The square of the perimeter of triangle $\vartriangle AXY$ is equal to $\frac{a+b\sqrt{c}}{d}$ , where $a, b, c$, and, $d$ are positive integers such that $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a + b + c + d$.

2014 Online Math Open Problems, 2

Suppose $(a_n)$, $(b_n)$, $(c_n)$ are arithmetic progressions. Given that $a_1+b_1+c_1 = 0$ and $a_2+b_2+c_2 = 1$, compute $a_{2014}+b_{2014}+c_{2014}$. [i]Proposed by Evan Chen[/i]

1992 IMO Longlists, 23

An [i]Egyptian number[/i] is a positive integer that can be expressed as a sum of positive integers, not necessarily distinct, such that the sum of their reciprocals is $1$. For example, $32 = 2 + 3 + 9 + 18$ is Egyptian because $\frac 12 +\frac 13 +\frac 19 +\frac{1}{18}=1$ . Prove that all integers greater than $23$ are [i]Egyptian[/i].

2011 All-Russian Olympiad Regional Round, 9.5

Find all $a$ such that for any positive integer $n$, the number $an(n+2)(n+4)$ is an integer. (Author: O. Podlipski)

2020 Puerto Rico Team Selection Test, 2

The cost of $1000$ grams of chocolate is $x$ dollars and the cost of $1000$ grams of potatoes is $y$ dollars, the numbers $x$ and $y$ are positive integers and have not more than $2$ digits. Mother said to Maria to buy $200$ grams of chocolate and $1000$ grams of potatoes that cost exactly $N$ dollars. Maria got confused and bought $1000$ grams of chocolate and $200$ grams of potatoes that cost exactly $M$ dollars ($M >N$). It turned out that the numbers $M$ and $N$ have no more than two digits and are formed of the same digits but in a different order. Find $x$ and $y$.

2007 ITest, 21

Tags: probability
James writes down fifteen 1's in a row and randomly writes $+$ or $-$ between each pair of consecutive 1's. One such example is \[1+1+1-1-1+1-1+1-1+1-1-1-1+1+1.\] What is the probability that the value of the expression James wrote down is $7$? $\begin{array}{@{\hspace{-1em}}l@{\hspace{14em}}l@{\hspace{14em}}l} \textbf{(A) }0&\textbf{(B) }\dfrac{6435}{2^{14}}&\textbf{(C) }\dfrac{6435}{2^{13}}\\\\ \textbf{(D) }\dfrac{429}{2^{12}}&\textbf{(E) }\dfrac{429}{2^{11}}&\textbf{(F) }\dfrac{429}{2^{10}}\\\\ \textbf{(G) }\dfrac1{15}&\textbf{(H) } \dfrac1{31}&\textbf{(I) }\dfrac1{30}\\\\ \textbf{(J) }\dfrac1{29}&\textbf{(K) }\dfrac{1001}{2^{15}}&\textbf{(L) }\dfrac{1001}{2^{14}}\\\\ \textbf{(M) }\dfrac{1001}{2^{13}}&\textbf{(N) }\dfrac1{2^7}&\textbf{(O) }\dfrac1{2^{14}}\\\\ \textbf{(P) }\dfrac1{2^{15}}&\textbf{(Q) }\dfrac{2007}{2^{14}}&\textbf{(R) }\dfrac{2007}{2^{15}}\\\\ \textbf{(S) }\dfrac{2007}{2^{2007}}&\textbf{(T) }\dfrac1{2007}&\textbf{(U) }\dfrac{-2007}{2^{14}}\end{array}$

2004 Germany Team Selection Test, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

2021 Putnam, B2

Tags:
Determine the maximum value of the sum \[ S=\sum_{n=1}^{\infty}\frac{n}{2^n}(a_1 a_2 \dots a_n)^{\frac{1}{n}} \] over all sequences $a_1,a_2,a_3,\dots$ of nonnegative real numbers satisfying \[ \sum_{k=1}^{\infty}a_k=1. \]

2021 Greece Junior Math Olympiad, 4

Given a triangle$ABC$ with $AB<BC<AC$ inscribed in circle $(c)$. The circle $c(A,AB)$ (with center $A$ and radius $AB$) interects the line $BC$ at point $D$ and the circle $(c)$ at point $H$. The circle $c(A,AC)$ (with center $A$ and radius $AC$) interects the line $BC$ at point $Z$ and the circle $(c)$ at point $E$. Lines $ZH$ and $ED$ intersect at point $T$. Prove that the circumscribed circles of triangles $TDZ$ and $TEH$ are equal.

1998 National Olympiad First Round, 25

In triangle $ ABC$ with $ \left|BC\right|>\left|BA\right|$, $ D$ is a point inside the triangle such that $ \angle ABD\equal{}\angle DBC$, $ \angle BDC\equal{}150{}^\circ$ and $ \angle DAC\equal{}60{}^\circ$. What is the measure of $ \angle BAD$? $\textbf{(A)}\ 45 \qquad\textbf{(B)}\ 50 \qquad\textbf{(C)}\ 60 \qquad\textbf{(D)}\ 75 \qquad\textbf{(E)}\ 80$

2024 International Zhautykov Olympiad, 2

Tags: geometry
Circles $\Omega$ and $\Gamma$ meet at points $A$ and $B$. The line containing their centres intersects $\Omega$ and $\Gamma$ at point $P$ and $Q$, respectively, such that these points lie on same side of the line $AB$ and point $Q$ is closer to $AB$ than point $P$. The circle $\delta$ lies on the same side of the line $AB$ as $P$ and $Q$, touches the segment $AB$ at point $D$ and touches $\Gamma$ at point $T$. The line $PD$ meets $\delta$ and $\Omega$ again at points $K$ and $L$, respectively. Prove that $\angle QTK=\angle DTL$

2014 Balkan MO Shortlist, G1

Tags: geometry
Let $ABC$ be an isosceles triangle, in which $AB=AC$ , and let $M$ and $N$ be two points on the sides $BC$ and $AC$, respectively such that $\angle BAM = \angle MNC$. Suppose that the lines $MN$ and $AB$ intersects at $P$. Prove that the bisectors of the angles $\angle BAM$ and $\angle BPM$ intersects at a point lying on the line $BC$

1987 Vietnam National Olympiad, 2

Let $ f : [0, \plus{}\infty) \to \mathbb R$ be a differentiable function. Suppose that $ \left|f(x)\right| \le 5$ and $ f(x)f'(x) \ge \sin x$ for all $ x \ge 0$. Prove that there exists $ \lim_{x\to\plus{}\infty}f(x)$.

2017 IFYM, Sozopol, 8

The points with integer coordinates in a plane are painted in two colors – blue and red. Prove that there exist an infinite monochromatic subset that is symmetrical on some point.

2021 Saint Petersburg Mathematical Olympiad, 5

A natural number $n$ is given. Prove that $$\sum_{n \le p \le n^2} \frac{1}{p} < 2$$ where the sum is across all primes $p$ in the range $[n, n^2]$

1992 AMC 12/AHSME, 24

Let $ABCD$ be a parallelogram of area $10$ with $AB = 3$ and $BC = 5$. Locate $E$, $F$ and $G$ on segments $\overline{AB}$, $\overline{BC}$ and $\overline{AD}$, respectively, with $AE = BF = AG = 2$. Let the line through $G$ parallel to $\overline{EF}$ intersect $\overline{CD}$ at $H$. The area of the quadrilateral $EFHG$ is $ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 4.5\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 5.5\qquad\textbf{(E)}\ 6 $

2007 National Olympiad First Round, 22

Let $n$ and $m$ be integers such that $n\leq 2007 \leq m$ and $n^n \equiv -1 \equiv m^m \pmod 5$. What is the least possible value of $m-n$? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 8 $

2014 Contests, 1

Find all pairs of non-negative integers $(x,y)$ such that \[\sqrt{x+y}-\sqrt{x}-\sqrt{y}+2=0.\]