Found problems: 85335
2014 Contests, 2
Let $M$ be the set of palindromic integers of the form $5n+4$ where $n\ge 0$ is an integer.
[list=a]
[*]If we write the elements of $M$ in increasing order, what is the $50^{\text{th}}$ number?
[*]Among all numbers in $M$ with nonzero digits which sum up to $2014$ which is the largest and smallest one?[/list]
1995 Czech and Slovak Match, 1
Let $ a_1\equal{}2, a_2\equal{}5$ and $ a_{n\plus{}2}\equal{}(2\minus{}n^2)a_{n\plus{}1}\plus{} (2\plus{}n^2)a_n$ for $ n\geq 1$. Do there exist $ p,q,r$ so that $ a_pa_q \equal{}a_r$?
2010 Romania National Olympiad, 4
Let $f:[-1,1]\to\mathbb{R}$ be a continuous function having finite derivative at $0$, and
\[I(h)=\int^h_{-h}f(x)\text{ d}x,\ h\in [0,1].\]
Prove that
a) there exists $M>0$ such that $|I(h)-2f(0)h|\le Mh^2$, for any $h\in [0,1]$.
b) the sequence $(a_n)_{n\ge 1}$, defined by $a_n=\sum_{k=1}^n\sqrt{k}|I(1/k)|$, is convergent if and only if $f(0)=0$.
[i]Calin Popescu[/i]
PEN G Problems, 21
Prove that if $ \alpha$ and $ \beta$ are positive irrational numbers satisfying $ \frac{1}{\alpha}\plus{}\frac{1}{\beta}\equal{} 1$, then the sequences
\[ \lfloor\alpha\rfloor,\lfloor 2\alpha\rfloor,\lfloor 3\alpha\rfloor,\cdots\]
and
\[ \lfloor\beta\rfloor,\lfloor 2\beta\rfloor,\lfloor 3\beta\rfloor,\cdots\]
together include every positive integer exactly once.
2019 CMIMC, 6
Across all $x \in \mathbb{R}$, find the maximum value of the expression $$\sin x + \sin 3x + \sin 5x.$$
2017 Czech-Polish-Slovak Junior Match, 2
Given is the triangle $ABC$, with $| AB | + | AC | = 3 \cdot | BC | $. Let's denote $D, E$ also points that $BCDA$ and $CBEA$ are parallelograms. On the sides $AC$ and $AB$ sides, $F$ and $G$ are selected respectively so that $| AF | = | AG | = | BC |$. Prove that the lines $DF$ and $EG$ intersect at the line segment $BC$
2011 ELMO Shortlist, 4
Let $p>13$ be a prime of the form $2q+1$, where $q$ is prime. Find the number of ordered pairs of integers $(m,n)$ such that $0\le m<n<p-1$ and
\[3^m+(-12)^m\equiv 3^n+(-12)^n\pmod{p}.\]
[i]Alex Zhu.[/i]
[hide="Note"]The original version asked for the number of solutions to $2^m+3^m\equiv 2^n+3^n\pmod{p}$ (still $0\le m<n<p-1$), where $p$ is a Fermat prime.[/hide]
2016 Online Math Open Problems, 1
Let $A_n$ denote the answer to the $n$th problem on this contest ($n=1,\dots,30$); in particular, the answer to this problem is $A_1$. Compute $2A_1(A_1+A_2+\dots+A_{30})$.
[i]Proposed by Yang Liu[/i]
2016 Tournament Of Towns, 4
30 masters and 30 juniors came onto tennis players meeting .Each master played with one master and 15 juniors while each junior played with one junior and 15 masters.Prove that one can find two masters and two juniors such that these masters played with each other ,juniors -with each other ,each of two masters played with at least one of two juniors and each of two juniors played with at least one of two masters.
2014 BMT Spring, 10
Let $f$ be a function on $(1,\ldots,n)$ that generates a permutation of $(1,\ldots,n)$. We call a fixed point of $f$ any element in the original permutation such that the element's position is not changed when the permutation is applied. Given that $n$ is a multiple of $4$, $g$ is a permutation whose fixed points are $\left(1,\ldots,\frac n2\right)$, and $h$ is a permutation whose fixed points consist of every element in an even-numbered position. What is the expected number of fixed points in $h(g(1,2,\ldots,104))$?
1991 Arnold's Trivium, 35
Sketch the geodesics on the surface
\[(x^2+y^2-2)^2+z^2=1\]
1980 Austrian-Polish Competition, 7
Find the greatest natural number $n$ such there exist natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and natural $a_{1}< a_{2}< \ldots < a_{n-1}$ satisfying the following equations for $i =1,2,\ldots,n-1$: \[x_{1}x_{2}\ldots x_{n}= 1980 \quad \text{and}\quad x_{i}+\frac{1980}{x_{i}}= a_{i}.\]
2016 Korea USCM, 1
Find the following limit.
\[\lim_{n\to\infty} \frac{1}{n} \log \left(\sum_{k=2}^{2^n} k^{1/n^2} \right)\]
2002 South africa National Olympiad, 6
Find all rational numbers $a$, $b$, $c$ and $d$ such that \[ 8a^2 - 3b^2 + 5c^2 + 16d^2 - 10ab + 42cd + 18a + 22b - 2c - 54d = 42, \] \[ 15a^2 - 3b^2 + 21c^2 - 5d^2 + 4ab +32cd - 28a + 14b - 54c - 52d = -22. \]
2014 May Olympiad, 4
In an excavation in ancient Rome an unusual clock with $18$ divisions marked with Roman numerals (see figure). Unfortunately the watch was broken into $5$ pieces. The sum of the numbers on each piece was the same. Show how he could be broken the clock.
[img]https://cdn.artofproblemsolving.com/attachments/7/a/6e83df1bb7adb13305239a152ac95a4a96f556.png[/img]
2016 JBMO Shortlist, 6
Given an acute triangle ${ABC}$, erect triangles ${ABD}$ and ${ACE}$ externally, so that ${\angle ADB= \angle AEC=90^o}$ and ${\angle BAD= \angle CAE}$. Let ${{A}_{1}}\in BC,{{B}_{1}}\in AC$ and ${{C}_{1}}\in AB$ be the feet of the altitudes of the triangle ${ABC}$, and let $K$ and ${K,L}$ be the midpoints of $[ B{{C}_{1}} ]$ and ${BC_1, CB_1}$, respectively. Prove that the circumcenters of the triangles $AKL,{{A}_{1}}{{B}_{1}}{{C}_{1}}$ and ${DEA_1}$ are collinear.
(Bulgaria)
1971 Miklós Schweitzer, 2
Prove that there exists an ordered set in which every uncountable subset contains an uncountable, well-ordered subset and that cannot be represented as a union of a countable family of well-ordered subsets.
[i]A. Hajnal[/i]
2011 AMC 10, 16
A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square?
[asy]
unitsize(10mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=4;
pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2));
draw(A--B--C--D--E--F--G--H--cycle);
draw(A--D);
draw(B--G);
draw(C--F);
draw(E--H);
[/asy]
$ \textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad\textbf{(E)}\ 2 - \sqrt{2}$
KoMaL A Problems 2017/2018, A. 714
Consider $n \ge 2$ pairwise disjoint disks $D_1,D_2,\ldots,D_n$ on the Euclidean plane. For each $k=1,2,\ldots,n$, denote by $f_k$ the inversion with respect to the boundary circle of $D_k$. (Here, $f_k$ is defined at every point of the plane, except for the center of $D_k$.) How many fixed points can the transformation $f_n\circ f_{n-1}\circ\ldots\circ f_1$ have, if it is defined on the largest possible subset of the plane?
2001 China Team Selection Test, 2
If the sum of all positive divisors (including itself) of a positive integer $n$ is $2n$, then $n$ is called a perfect number. For example, the sum of the positive divisors of 6 is $1 + 2 + 3 + 6 = 2 \times 6$, hence 6 is a perfect number.
Prove: There does not exist a perfect number of the form $p^a q^b r^c$, where $a, b, c$ are positive integers, and $p, q, r$ are odd primes.
1959 IMO, 1
Prove that the fraction $ \dfrac{21n \plus{} 4}{14n \plus{} 3}$ is irreducible for every natural number $ n$.
2015 Regional Olympiad of Mexico Southeast, 6
If we separate the numbers $1,2,3,4,\dots, 100$ in two lists with
$$a_1<a_2<\cdots<a_{50}$$ and $$b_1>b_2>\cdots>b_{50}$$
Prove that, no matter how we do the separation,
$$\vert a_1-b_1\vert +\vert a_2-b_2\vert+\cdots +\vert a_{50}-b_{50}\vert=2500$$
2002 Bosnia Herzegovina Team Selection Test, 2
The vertices of the convex quadrilateral $ABCD$ and the intersection point $S$ of its diagonals are integer points in the plane. Let $P$ be the area of $ABCD$ and $P_1$ the area of triangle $ABS$. Prove that
\[\sqrt{P} \ge \sqrt{P_1}+\frac{\sqrt2}2\]
1967 IMO Shortlist, 4
The square $ABCD$ has to be decomposed into $n$ triangles (which are not overlapping) and which have all angles acute. Find the smallest integer $n$ for which there exist a solution of that problem and for such $n$ construct at least one decomposition. Answer whether it is possible to ask moreover that (at least) one of these triangles has the perimeter less than an arbitrarily given positive number.
2002 German National Olympiad, 1
Find all real numbers $a,b$ satisfying the following system of equations
\begin{align*}
2a^2 -2ab+b^2 &=a\\
4a^2 -5ab +2b^2 & =b.
\end{align*}