This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1994 Swedish Mathematical Competition, 2

In the triangle $ABC$, the medians from $B$ and $C$ are perpendicular. Show that $\cot B + \cot C \ge \frac23$.

2012 AMC 10, 22

The sum of the first $m$ positive odd integers is $212$ more than the sum of the first $n$ positive even integers. What is the sum of all possible values of $n$? $ \textbf{(A)}\ 255 \qquad\textbf{(B)}\ 256 \qquad\textbf{(C)}\ 257 \qquad\textbf{(D)}\ 258 \qquad\textbf{(E)}\ 259 $

2022 Purple Comet Problems, 3

Tags:
An isosceles triangle has a base with length $12$ and the altitude to the base has length $18$. Find the area of the region of points inside the triangle that are a distance of at most 3 from that altitude.

1974 IMO Longlists, 14

Tags: inequalities
Let $n$ and $k$ be natural numbers and $a_1,a_2,\ldots ,a_n$ be positive real numbers satisfying $a_1+a_2+\cdots +a_n=1$. Prove that \[\dfrac {1} {a_1^{k}}+\dfrac {1} {a_2^{k}}+\cdots +\dfrac {1} {a_n^{k}} \ge n^{k+1}.\]

2022 Estonia Team Selection Test, 6

Tags:
Consider a $100\times 100$ square unit lattice $\textbf{L}$ (hence $\textbf{L}$ has $10000$ points). Suppose $\mathcal{F}$ is a set of polygons such that all vertices of polygons in $\mathcal{F}$ lie in $\textbf{L}$ and every point in $\textbf{L}$ is the vertex of exactly one polygon in $\mathcal{F}.$ Find the maximum possible sum of the areas of the polygons in $\mathcal{F}.$ [i]Michael Ren and Ankan Bhattacharya, USA[/i]

1999 National High School Mathematics League, 9

Tags:
In $\triangle ABC$, if $9a^2+9b^2-19c^2=0$, then $\frac{\cot C}{\cot A+\cot B}=$________.

Kyiv City MO Juniors 2003+ geometry, 2018.7.41

In the quadrilateral $ABCD$ point $E$ - the midpoint of the side $AB$, point $F$ - the midpoint of the side $BC$, point $G$ - the midpoint $AD$ . It turned out that the segment $GE$ is perpendicular to $AB$, and the segment $GF$ is perpendicular to the segment $BC$. Find the value of the angle $GCD$, if it is known that $\angle ADC = 70 {} ^ \circ$.

2009 Miklós Schweitzer, 7

Let $ H$ be an arbitrary subgroup of the diffeomorphism group $ \mathsf{Diff}^\infty(M)$ of a differentiable manifold $ M$. We say that an $ \mathcal C^\infty$-vector field $ X$ is [i]weakly tangent[/i] to the group $ H$, if there exists a positive integer $ k$ and a $ \mathcal C^\infty$-differentiable map $ \varphi \mathrel{: } \mathord{]} \minus{} \varepsilon,\varepsilon\mathord{[}^k\times M\to M$ such that (i) for fixed $ t_1,\dots,t_k$ the map \[ \varphi_{t_1,\dots,t_k} : x\in M\mapsto \varphi(t_1,\dots,t_k,x)\] is a diffeomorphism of $ M$, and $ \varphi_{t_1,\dots,t_k}\in H$; (ii) $ \varphi_{t_1,\dots,t_k}\in H \equal{} \mathsf{Id}$ whenever $ t_j \equal{} 0$ for some $ 1\leq j\leq k$; (iii) for any $ \mathcal C^\infty$-function $ f: M\to \mathbb R$ \[ X f \equal{} \left.\frac {\partial^k(f\circ\varphi_{t_1,\dots,t_k})}{\partial t_1\dots\partial t_k}\right|_{(t_1,\dots,t_k) \equal{} (0,\dots,0)}.\] Prove, that the commutators of $ \mathcal C^\infty$-vector fields that are weakly tangent to $ H\subset \textsf{Diff}^\infty(M)$ are also weakly tangent to $ H$.

2020 Jozsef Wildt International Math Competition, W27

Let $$P(x)=a_0x^n+a_1x^{n-1}+\ldots+a_n$$ where $a_0,\ldots,a_n$ are integers. Show that if $P$ takes the value $2020$ for four distinct integral values of $x$, then $P$ cannot take the value $2001$ for any integral value of $x$. [i]Proposed by Ángel Plaza[/i]

2012 BAMO, 5

Find all nonzero polynomials $P(x)$ with integers coefficients that satisfy the following property: whenever $a$ and $b$ are relatively prime integers, then $P(a)$ and $P(b)$ are relatively prime as well. Prove that your answer is correct. (Two integers are [b]relatively prime[/b] if they have no common prime factors. For example, $-70$ and $99$ are relatively prime, while $-70$ and $15$ are not relatively prime.)

2008 National Olympiad First Round, 2

For which value of $A$, does the equation $3m^2n = n^3 + A$ have a solution in natural numbers? $ \textbf{(A)}\ 301 \qquad\textbf{(B)}\ 403 \qquad\textbf{(C)}\ 415 \qquad\textbf{(D)}\ 427 \qquad\textbf{(E)}\ 481 $

1999 Korea Junior Math Olympiad, 3

Recall that $[x]$ denotes the largest integer not exceeding $x$ for real $x$. For integers $a, b$ in the interval $1 \leq a<b \leq 100$, find the number of ordered pairs $(a, b)$ satisfying the following equation. $$[a+\frac{b}{a}]=[b+\frac{a}{b}]$$

2005 Junior Balkan Team Selection Tests - Romania, 13

The positive integers from 1 to $n^2$ are placed arbitrarily on the $n^2$ squares of a $n\times n$ chessboard. Two squares are called [i]adjacent[/i] if they have a common side. Show that two opposite corner squares can be joined by a path of $2n-1$ adjacent squares so that the sum of the numbers placed on them is at least $\left\lfloor \frac{n^3} 2 \right\rfloor + n^2 - n + 1$. [i]Radu Gologan[/i]

1986 ITAMO, 5

Given an acute triangle $T$ with sides $a,b,c$, find the tetrahedra with base $T$ whose all faces are acute triangles of the same area.

2011 Today's Calculation Of Integral, 716

Prove that : \[\int_1^{\sqrt{e}} (\ln x)^n\ dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^{m}\]

2014 Belarus Team Selection Test, 1

Given triangle $ABC$ with $\angle A = a$. Let $AL$ be the bisector of the triangle $ABC$. Let the incircle of $\vartriangle ABC$ touch the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $X$ be the intersection point of the lines $AQ$ and $LP$. Prove that the lines $BX$ and $AL$ are perpendicular. (V. Karamzin)

KoMaL A Problems 2017/2018, A. 720

We call a positive integer [i]lively[/i] if it has a prime divisor greater than $10^{10^{100}}$. Prove that if $S$ is an infinite set of lively positive integers, then it has an infinite subset $T$ with the property that the sum of the elements in any finite nonempty subset of $T$ is a lively number.

1994 Turkey Team Selection Test, 3

Find all integer pairs $(a,b)$ such that $a\cdot b$ divides $a^2+b^2+3$.

2017 ASDAN Math Tournament, 13

Tags:
Let $S_1$ be a square of side length $3$. For $i=2,3,4,\dots$, inscribe a square $S_i$ inside $S_{i-1}$ such that the sides of the inner square form four $30^\circ-60^\circ-90^\circ$ triangles with the outer square. Compute the total sum $$\sum_{i=1}^\infty\text{area}(S_i).$$

2018 Chile National Olympiad, 4

Find all postitive integers n such that $$\left\lfloor \frac{n}{2} \right\rfloor \cdot \left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n}{4} \right\rfloor=n^2$$ where $\lfloor x \rfloor$ represents the largest integer less than the real number $x$.

1998 Moldova Team Selection Test, 6

Tags: geometry
Two triangles $ABC$ and $BDE$ have vertexes $C$ and $E$ on the same side of the line $AB{}$ and $AB=a<BD$. Denote $\{P\}=CE\cap AB$ and $\gamma=m(\angle CPA)$. Let $r_1$ be the radius of the inscribed cricle of triangle $PAC$ and $r_2$ the radius of the excircle of triangle $PDE$, tangent to the side $DE$. Find $r_1+r_2$.

2023 ISL, G5

Tags: geometry
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$ and circumcentre $O$. Points $D\neq B$ and $E\neq C$ lie on $\omega$ such that $BD\perp AC$ and $CE\perp AB$. Let $CO$ meet $AB$ at $X$, and $BO$ meet $AC$ at $Y$. Prove that the circumcircles of triangles $BXD$ and $CYE$ have an intersection lie on line $AO$. [i]Ivan Chan Kai Chin, Malaysia[/i]

1945 Moscow Mathematical Olympiad, 095

Two circles are tangent externally at one point. Common external tangents are drawn to them and the tangent points are connected. Prove that the sum of the lengths of the opposite sides of the quadrilateral obtained are equal.

2015 JBMO TST - Turkey, 8

A coloring of all plane points with coordinates belonging to the set $S=\{0,1,\ldots,99\}$ into red and white colors is said to be [i]critical[/i] if for each $i,j\in S$ at least one of the four points $(i,j),(i + 1,j),(i,j + 1)$ and $(i + 1, j + 1)$ $(99 + 1\equiv0)$ is colored red. Find the maximal possible number of red points in a critical coloring which loses its property after recoloring of any red point into white.

2020 BMT Fall, 3

The graph of the degree $2021$ polynomial $P(x)$, which has real coefficients and leading coefficient $1$, meets the $x$-axis at the points $(1,0),\, (2,0),\,(3,0),\dots,\, (2020,0)$ and nowhere else. The mean of all possible values of $P(2021)$ can be written in the form $a!/b$, where $a$ and $b$ are positive integers and $a$ is as small as possible. Compute $a+b$.