Found problems: 85335
2025 Romania National Olympiad, 1
We say a ring $(A,+,\cdot)$ has property $(P)$ if :
\[
\begin{cases}
\text{the set } A \text{ has at least } 4 \text{ elements} \\
\text{the element } 1+1 \text{ is invertible}\\
x+x^4=x^2+x^3 \text{ holds for all } x \in A
\end{cases}
\]
a) Prove that if a ring $(A,+,\cdot)$ has property $(P)$, and $a,b \in A$ are distinct elements, such that $a$ and $a+b$ are units, then $1+ab$ is also a unit, but $b$ is not a unit.
b) Provide an example of a ring with property $(P)$.
1996 Italy TST, 4
4.4. Prove that there exists a set X of 1996 positive integers with the following properties:
(i) the elements of X are pairwise coprime;
(ii) all elements of X and all sums of two or more distinct elements of X are
composite numbers
2017 Harvard-MIT Mathematics Tournament, 1
Let $A$, $B$, $C$, $D$ be four points on a circle in that order. Also, $AB=3$, $BC=5$, $CD=6$, and $DA=4$. Let diagonals $AC$ and $BD$ intersect at $P$. Compute $\frac{AP}{CP}$.
1965 All Russian Mathematical Olympiad, 056
a) Each of the numbers $x_1,x_2,...,x_n$ can be $1, 0$, or $-1$. What is the minimal possible value of the sum of all products of couples of those numbers.
b) Each absolute value of the numbers $x_1,x_2,...,x_n$ doesn't exceed $1$. What is the minimal possible value of the sum of all products of couples of those numbers.
2000 Baltic Way, 19
Let $t\ge\frac{1}{2}$ be a real number and $n$ a positive integer. Prove that
\[t^{2n}\ge (t-1)^{2n}+(2t-1)^n\]
2006 Belarusian National Olympiad, 6
An $n \times m$ table ( $n \le m$ ) is filled in accordance with the rules of the game "Minesweeper": mines are placed at some cells (not more than one mine at the cell) and in the remaining cells one writes the number of the mines in the neighboring (by side or by vertex) cells. Then the sum of allnumbers in the table is computed (this sum is equal to $9$ for the picture). What is the largest possible value of this sum?
(V. Lebed)
[img]https://cdn.artofproblemsolving.com/attachments/2/9/726ccdbc57807788a5f6e88a5acb42b10a6cc0.png[/img]
Russian TST 2015, P2
Let $p\geqslant 5$ be a prime number. Prove that the set $\{1,2,\ldots,p - 1\}$ can be divided into two nonempty subsets so that the sum of all the numbers in one subset and the product of all the numbers in the other subset give the same remainder modulo $p{}$.
2016 Bosnia And Herzegovina - Regional Olympiad, 4
Let $A$ be a set of $65$ integers with pairwise different remainders modulo $2016$. Prove that exists a subset $B=\{a,b,c,d\}$ of set $A$ such that $a+b-c-d$ is divisible with $2016$
2022 ELMO Revenge, 5
Prove that $a^3 + b^3 + c^3 + abc +a^{3}b^{2}c^{-1}+a^{3}c^{2}b^{-1}+b^{3}a^{2}c^{-1}+b^{3}c^{2}a^{-1}+c^{3}a^{2}b^{-1}+c^{3}b^{2}a^{-1}+a^{5}b^{3}c^{-3}+ abc^{14} +
a^{5}c^{3}b^{-3}+b^{5}a^{3}c^{-3}+b^{5}c^{3}a^{-3}+c^{5}a^{3}b^{-3}+c^{5}b^{3}a^{-3}+a^{6}b^{1}c^{-1}+a^{6}c^{1}b^{-1}+b^{6}a^{1}c^{-1}+b^{6}c^{1}a^{-1}+c^{6}a^{1}b^{-1}+c^{6}b^{1}a^{-1}+ a^{6}b^{4}c^{-3}+a^{6}c^{4}b^{-3}+b^{6}a^{4}c^{-3}+b^{6}c^{4}a^{-3}+c^{6}a^{4}b^{-3}+c^{6}b^{4}a^{-3}+a^{7}b^{2}c^{-1}+a^{7}c^{2}b^{-1}+b^{7}a^{2}c^{-1}+b^{7}c^{2}a^{-1}+c^{7}a^{2}b^{-1}+ abc + a^{14}bc + c^{7}b^{2}a^{-1}+a^{4}b^{1}c^{4}+a^{4}c^{1}b^{4}+b^{4}a^{1}c^{4}+b^{4}c^{1}a^{4}+c^{4}a^{1}b^{4}+c^{4}b^{1}a^{4}+a^{6}c^{4}+a^{6}b^{4}+b^{6}c^{4}+b^{6}a^{4}+c^{6}b^{4}+c^{6}a^{4}+a^{9}b^{6}c^{-4}+a^{9}c^{6}b^{-4}+ ab^{14}c + b^{9}a^{6}c^{-4}+b^{9}c^{6}a^{-4}+c^{9}a^{6}b^{-4}+ abc + c^{9}b^{6}a^{-4}+a^{12}b^{1}c^{-1}+a^{12}c^{1}b^{-1}+b^{12}a^{1}c^{-1}+b^{12}c^{1}a^{-1}+c^{12}a^{1}b^{-1}+ c^5 b^5 a^5 - c^5 b^5 a^2 + 3 c^5 b^5 - c^5 b^2 a^5 + c^5 b^2 a^2 - 3 c^5 b^2 + 3 c^5 a^5 - 3 c^5 a^2 + 9 c^5 - c^2 b^5 a^5 + c^2 b^5 a^2 - 3 c^2 b^5 + c^2 b^2 a^5 - c^2 b^2 a^2 + 3 c^2 b^2 - 3 c^2 a^5 + 3 c^2 a^2 - 9 c^2 + 3 b^5 a^5 - 3 b^5 a^2 + 9 b^5 - 3 b^2 a^5 + 3 b^2 a^2 - 9 b^2 + 9 a^5 - 9 a^2 + 27 + c^{12}b^{1}a^{-1}+a^{13}b^{9}c^{-9}+a^{13}c^{9}b^{-9}+b^{13}a^{9}c^{-9}+b^{13}c^{9}a^{-9}+c^{13}a^{9}b^{-9}+c^{13}b^{9}a^{-9}+a^{12}b^{11}c^{-9}+a^{12}c^{11}b^{-9}+b^{12}a^{11}c^{-9}+b^{12}c^{11}a^{-9}+c^{12}a^{11}b^{-9}+c^{12}b^{11}a^{-9}+a^{8}b^{7}+a^{8}c^{7}+b^{8}a^{7}+b^{8}c^{7}+c^{8}a^{7}+c^{8}b^{7} + a^{16} + b^{16} + c^{16} + a^{16} + b^{16} + c^{16} + a^{16} + b^{16} + c^{16}\ge c^3 + 3 c^2 a + 3 c b^2 + 6 c b a + b^3 + 3 b^2 a + a^3 + a^{1}c^{2}+a^{1}b^{2}+4b^{1}c^{2}+4b^{1}a^{2}+c^{1}b^{2}+4c^{1}a^{2}+a^{1}c^{3}+a^{1}b^{3}+b^{1}c^{3}+b^{1}a^{3}+c^{1}b^{3}+c^{1}a^{3}+a^{3}b^{2}+a^{3}c^{2}+b^{3}a^{2}+b^{3}c^{2}+c^{3}a^{2}+c^{3}b^{2}+a^{5}c^{1}+a^{5}b^{1}+b^{5}c^{1}+b^{5}a^{1}+c^{5}b^{1}+c^{5}a^{1}+a^{2}b^{1}c^{4}+a^{2}c^{1}b^{4}+b^{2}a^{1}c^{4}+b^{2}c^{1}a^{4}+c^{2}a^{1}b^{4}+c^{2}b^{1}a^{4}+a^{1}c^{7}+a^{1}b^{7}+b^{1}c^{7}+b^{1}a^{7}+c^{1}b^{7}+c^{1}a^{7}+a^{1}c^{8}+a^{1}b^{8}+b^{1}c^{8}+b^{1}a^{8}+c^{1}b^{8}+c^{1}a^{8}+a^{5}b^{1}c^{4}+a^{5}c^{1}b^{4}+b^{5}a^{1}c^{4}+b^{5}c^{1}a^{4}+c^{5}a^{1}b^{4}+c^{5}b^{1}a^{4}+a^{2}b^{1}c^{8}+a^{2}c^{1}b^{8}+b^{2}a^{1}c^{8}+b^{2}c^{1}a^{8}+c^{2}a^{1}b^{8}+c^{2}b^{1}a^{8}+a^{1}c^{11}+a^{1}b^{11}+b^{1}c^{11}+b^{1}a^{11}+c^{1}b^{11}+c^{1}a^{11}+a^{6}b^{2}c^{5}+a^{6}c^{2}b^{5}+b^{6}a^{2}c^{5}+b^{6}c^{2}a^{5}+c^{6}a^{2}b^{5}+c^{6}b^{2}a^{5}+a^{3}b^{2}c^{9}+a^{3}c^{2}b^{9}+b^{3}a^{2}c^{9}+b^{3}c^{2}a^{9}+c^{3}a^{2}b^{9}+c^{3}b^{2}a^{9}+a^{3}b^{1}c^{11}+a^{3}c^{1}b^{11}+b^{3}a^{1}c^{11}+b^{3}c^{1}a^{11}+c^{3}a^{1}b^{11}+c^{3}b^{1}a^{11} + a^{15}b + ab^{15} + a^{15}c + ac^{15} + b^{15}c + bc^{15} + a^{15}b + ab^{15} + a^{15}c + ac^{15} + b^{15}c + bc^{15}+c^{2}a^{1}b^{4}+c^{2}b^{1}a^{4}+a^{1}c^{7}+a^{1}b^{7}+b^{1}c^{7}+b^{1}a^{7}+c^{1}b^{7}+c^{1}a^{7}+a^{1}c^{8}+a^{1}b^{8}+b^{1}c^{8}+b^{1}a^{8}+c^{1}b^{8}+c^{1}a^{8}+a^{5}b^{1}c^{4}+a^{5}c^{1}b^{4}+b^{5}a^{1}c^{4}+b^{5}c^{1}a^{4}+c^{5}a^{1}b^{4}+c^{5}b^{1}a^{4}+a^{2}b^{1}c^{8}+a^{2}c^{1}b^{8}+b^{2}a^{1}c^{8}+b^{2}c^{1}a^{8}+c^{2}a^{1}b^{8}+c^{2}b^{1}a^{8}+a^{1}c^{11}+a^{1}b^{11}+b^{1}c^{11}+b^{1}a^{11}+c^{1}b^{11}+c^{1}a^{11}+a^{6}b^{2}c^{5}+a^{6}c^{2}b^{5}+b^{6}a^{2}c^{5}+b^{6}c^{2}a^{5}+c^{6}a^{2}b^{5}+c^{6}b^{2}a^{5}+a^{3}b^{2}c^{9}+a^{3}c^{2}b^{9}+b^{3}a^{2}c^{9}+b^{3}c^{2}a^{9}+c^{3}a^{2}b^{9}+c^{3}b^{2}a^{9}+a^{3}b^{1}c^{11}+a^{3}c^{1}b^{11}+b^{3}a^{1}c^{11}+b^{3}c^{1}a^{11}+c^{3}a^{1}b^{11}+c^{3}b^{1}a^{11} + a^{15}b + ab^{15} + a^{15}c + ac^{15} + b^{15}c + bc^{15} + a^{15}b + ab^{15} + a^{15}c + ac^{15} + b^{15}c + bc^{15}$ for all $a,b,c\in\mathbb R^+$.
[i]Proposed by Henry Jiang and C++[/i]
2024 Mexican Girls' Contest, 1
Let \( x \) be a real number. Determine the solution to the following equation:
\[
\frac{x^2 + 1}{1} + \frac{x^2 + 2}{2} + \frac{x^2 + 3}{3} + \ldots + \frac{x^2 + 2024}{2024} = 2024
\]
2024 Baltic Way, 16
Determine all composite positive integers $n$ such that, for each positive divisor $d$ of $n$, there are integers $k\geq 0$ and $m\geq 2$ such that $d=k^m+1$.
2013 Estonia Team Selection Test, 4
Let $D$ be the point different from $B$ on the hypotenuse $AB$ of a right triangle $ABC$ such that $|CB| = |CD|$. Let $O$ be the circumcenter of triangle $ACD$. Rays $OD$ and $CB$ intersect at point $P$, and the line through point $O$ perpendicular to side AB and ray $CD$ intersect at point $Q$. Points $A, C, P, Q$ are concyclic. Does this imply that $ACPQ$ is a square?
1993 All-Russian Olympiad, 3
Quadratic trinomial $f(x)$ is allowed to be replaced by one of the trinomials $x^2f(1+\frac{1}{x})$ or $(x-1)^2f(\frac{1}{x-1})$. With the use of these operations, is it possible to go from $x^2+4x+3$ to $x^2+10x+9$?
2004 VJIMC, Problem 1
Are the groups $(\mathbb Q,+)$ and $(\mathbb Q^+,\cdot)$ isomorphic?
2008 Oral Moscow Geometry Olympiad, 5
There are two shawls, one in the shape of a square, the other in the shape of a regular triangle, and their perimeters are the same. Is there a polyhedron that can be completely pasted over with these two shawls without overlap (shawls can be bent, but not cut)?
(S. Markelov).
2003 Regional Competition For Advanced Students, 2
Find all prime numbers $ p$ with $ 5^p\plus{}4p^4$ is the square of an integer.
2007 Today's Calculation Of Integral, 178
Let $f(x)$ be a differentiable function such that $f'(x)+f(x)=4xe^{-x}\sin 2x,\ \ f(0)=0.$
Find $\lim_{n\to\infty}\sum_{k=1}^{n}f(k\pi).$
2022 JBMO TST - Turkey, 8
Find all prime numbers $p$ such that the number
$$3^p+4^p+5^p+9^p-98$$
has at most $6$ positive divisors.
2001 IMO Shortlist, 1
Let $ T$ denote the set of all ordered triples $ (p,q,r)$ of nonnegative integers. Find all functions $ f: T \rightarrow \mathbb{R}$ satisfying
\[ f(p,q,r) = \begin{cases} 0 & \text{if} \; pqr = 0, \\
1 + \frac{1}{6}(f(p + 1,q - 1,r) + f(p - 1,q + 1,r) & \\
+ f(p - 1,q,r + 1) + f(p + 1,q,r - 1) & \\
+ f(p,q + 1,r - 1) + f(p,q - 1,r + 1)) & \text{otherwise} \end{cases}
\]
for all nonnegative integers $ p$, $ q$, $ r$.
2014 Saudi Arabia BMO TST, 4
Let $ABC$ be a triangle with $\angle B \le \angle C$, $I$ its incenter and $D$ the intersection point of line $AI$ with side $BC$. Let $M$ and $N$ be points on sides $BA$ and $CA$, respectively, such that $BM = BD$ and $CN = CD$. The circumcircle of triangle $CMN$ intersects again line $BC$ at $P$. Prove that quadrilateral $DIMP$ is cyclic.
2009 Balkan MO Shortlist, N1
Solve the given equation in integers
\begin{align*} y^3=8x^6+2x^3y-y^2 \end{align*}
2023 Junior Balkan Team Selection Tests - Romania, P1
Determine the smallest natural number $n$ for which there exist distinct nonzero naturals $a, b, c$, such that $n=a+b+c$ and $(a + b)(b + c)(c + a)$ is a perfect cube.
1997 Korea National Olympiad, 3
Let $ABCDEF$ be a convex hexagon such that $AB=BC,CD=DE, EF=FA.$
Prove that $\frac{BC}{BE}+\frac{DE}{DA}+\frac{FA}{FC}\ge\frac{3}{2}$ and find when equality holds.
1994 Turkey MO (2nd round), 5
Find the set of all ordered pairs $(s,t)$ of positive integers such that \[t^{2}+1=s(s+1).\]
1971 All Soviet Union Mathematical Olympiad, 157
a) Consider the function $$f(x,y) = x^2 + xy + y^2$$ Prove that for the every point $(x,y)$ there exist such integers $(m,n)$, that $$f((x-m),(y-n)) \le 1/2$$
b) Let us denote with $g(x,y)$ the least possible value of the $f((x-m),(y-n))$ for all the integers $m,n$. The statement a) was equal to the fact $g(x,y) \le 1/2$.
Prove that in fact, $$g(x,y) \le 1/3$$
Find all the points $(x,y)$, where $g(x,y)=1/3$.
c) Consider function $$f_a(x,y) = x^2 + axy + y^2 \,\,\, (0 \le a \le 2)$$
Find any $c$ such that $g_a(x,y) \le c$.
Try to obtain the closest estimation.