This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 Malaysia National Olympiad, 6

It is known that $2018(2019^{39}+2019^{37}+...+2019)+1$ is prime. How many positive factors does $2019^{41}+1$ have?

1971 IMO Longlists, 3

Tags: inequalities
Let $a, b, c$ be positive real numbers, $0 < a \leq b \leq c$. Prove that for any positive real numbers $x, y, z$ the following inequality holds: \[(ax+by+cz) \left( \frac xa + \frac yb+\frac zc \right) \leq (x+y+z)^2 \cdot \frac{(a+c)^2}{4ac}.\]

1999 Baltic Way, 15

Let $ABC$ be a triangle with $\angle C=60^\circ$ and $AC<BC$. The point $D$ lies on the side $BC$ and satisfies $BD=AC$. The side $AC$ is extended to the point $E$ where $AC=CE$. Prove that $AB=DE$.

2013 Saint Petersburg Mathematical Olympiad, 3

Tags: geometry
$ABC$ is triangle. $l_1$- line passes through $A$ and parallel to $BC$, $l_2$ - line passes through $C$ and parallel to $AB$. Bisector of $\angle B$ intersect $l_1$ and $l_2$ at $X,Y$. $XY=AC$. What value can take $\angle A- \angle C$ ?

2016 Czech-Polish-Slovak Junior Match, 1

Let $AB$ be a given segment and $M$ be its midpoint. We consider the set of right-angled triangles $ABC$ with hypotenuses $AB$. Denote by $D$ the foot of the altitude from $C$. Let $K$ and $L$ be feet of perpendiculars from $D$ to the legs $BC$ and $AC$, respectively. Determine the largest possible area of the quadrilateral $MKCL$. Czech Republic

1970 IMO Shortlist, 11

Tags: algebra , root , polynomial
Let $P,Q,R$ be polynomials and let $S(x) = P(x^3) + xQ(x^3) + x^2R(x^3)$ be a polynomial of degree $n$ whose roots $x_1,\ldots, x_n$ are distinct. Construct with the aid of the polynomials $P,Q,R$ a polynomial $T$ of degree $n$ that has the roots $x_1^3 , x_2^3 , \ldots, x_n^3.$

2022 HMNT, 8

Tags: geometry
Consider parallelogram $ABCD$ with $AB > BC$. Point $E$ on $\overline{AB}$ and point $F$ on $\overline{CD}$ are marked such that there exists a circle $\omega_1$ passing through $A$, $D$, $E$, $F$ and a circle $\omega_2$ passing through $B$, $C$, $E$, $F$. If $\omega_1$, $\omega_2$ partition $\overline{BD}$ into segments $\overline{BX}$, $\overline{XY}$ , $\overline{Y D}$ in that order, with lengths $200$, $9$, $80$, respectively, compute $BC$.

2013 Online Math Open Problems, 4

Suppose $a_1, a_2, a_3, \dots$ is an increasing arithmetic progression of positive integers. Given that $a_3 = 13$, compute the maximum possible value of \[ a_{a_1} + a_{a_2} + a_{a_3} + a_{a_4} + a_{a_5}. \][i]Proposed by Evan Chen[/i]

2007 Iran MO (3rd Round), 3

Let $ n$ be a natural number, and $ n \equal{} 2^{2007}k\plus{}1$, such that $ k$ is an odd number. Prove that \[ n\not|2^{n\minus{}1}\plus{}1\]

2010 Contests, 3

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x+y) = \max(f(x),y) + \min(f(y),x)$. [i]George Xing.[/i]

2017 IFYM, Sozopol, 1

Tags: geometry
$BB_1$ and $CC_1$ are altitudes in $\Delta ABC$. Let $B_1 C_1$ intersect the circumscribed circle of $\Delta ABC$ in points $E$ and $F$. Let $k$ be a circle passing through $E$ and $F$ in such way that the center of $k$ lies on the arc $\widehat{BAC}$. We denote with $M$ the middle point of $BC$. $X$ and $Y$ are the points on $k$ for which $MX$ and $MY$ are tangent to $k$. Let $EX\cap FY=S_1,EY\cap FX=S_2,BX\cap CY=U,$ and $BY\cap CX=V$. Prove that $S_1 S_2$ and $UV$ intersect in the orthocenter of $\Delta ABC$.

2015 Romania Masters in Mathematics, 5

Let $p \ge 5$ be a prime number. For a positive integer $k$, let $R(k)$ be the remainder when $k$ is divided by $p$, with $0 \le R(k) \le p-1$. Determine all positive integers $a < p$ such that, for every $m = 1, 2, \cdots, p-1$, $$ m + R(ma) > a. $$

2011 NIMO Problems, 8

Define $f(x)$ to be the nearest integer to $x$, with the greater integer chosen if two integers are tied for being the nearest. For example, $f(2.3) = 2$, $f(2.5) = 3$, and $f(2.7) = 3$. Define $[A]$ to be the area of region $A$. Define region $R_n$, for each positive integer $n$, to be the region on the Cartesian plane which satisfies the inequality $f(|x|) + f(|y|) < n$. We pick an arbitrary point $O$ on the perimeter of $R_n$, and mark every two units around the perimeter with another point. Region $S_{nO}$ is defined by connecting these points in order. [b]a)[/b] Prove that the perimeter of $R_n$ is always congruent to $4 \pmod{8}$. [b]b)[/b] Prove that $[S_{nO}]$ is constant for any $O$. [b]c)[/b] Prove that $[R_n] + [S_{nO}] = (2n-1)^2$. [i]Proposed by Lewis Chen[/i]

2013 239 Open Mathematical Olympiad, 7

Tags:
Dima wrote several natural numbers on the blackboard and underlined some of them. Misha wants to erase several numbers (but not all) such that a multiple of three underlined numbers remain and the total amount of the remaining numbers would be divisible by $2013$; but after trying for a while he realizes that it's impossible to do this. What is the largest number of the numbers on the board?

2022 Durer Math Competition Finals, 1

How many $10$-digit sequences are there, made up of $1$ four, $2$ threes, $3$ twos, and $4$ ones, in which there is a two in between any two ones, a three in between any two twos, and a four in between any two threes?

1983 IMO Shortlist, 10

Let $p$ and $q$ be integers. Show that there exists an interval $I$ of length $1/q$ and a polynomial $P$ with integral coefficients such that \[ \left|P(x)-\frac pq \right| < \frac{1}{q^2}\]for all $x \in I.$

1958 February Putnam, B2

Prove that the product of four consecutive positive integers cannot be a perfect square or cube.

1997 Iran MO (2nd round), 3

Let $a,b$ be positive integers and $p=\frac{b}{4}\sqrt{\frac{2a-b}{2a+b}}$ be a prime number. Find the maximum value of $p$ and justify your answer.

2013 Tournament of Towns, 4

Let $ABC$ be an isosceles triangle. Suppose that points $K$ and $L$ are chosen on lateral sides $AB$ and $AC$ respectively so that $AK = CL$ and $\angle ALK + \angle LKB = 60^o$. Prove that $KL = BC$.

2013 Romania National Olympiad, 2

Whether $m$ and $n$ natural numbers, $m,n\ge 2$. Consider matrices, ${{A}_{1}},{{A}_{2}},...,{{A}_{m}}\in {{M}_{n}}(R)$ not all nilpotent. Demonstrate that there is an integer number $k>0$ such that ${{A}^{k}}_{1}+{{A}^{k}}_{2}+.....+{{A}^{k}}_{m}\ne {{O}_{n}}$

2013 Stanford Mathematics Tournament, 5

A rhombus has area $36$ and the longer diagonal is twice as long as the shorter diagonal. What is the perimeter of the rhombus?

2010 Contests, 1

Let $S$ be a subset with $673$ elements of the set $\{1,2,\ldots ,2010\}$. Prove that one can find two distinct elements of $S$, say $a$ and $b$, such that $6$ divides $a+b$.

2016 Mexico National Olmypiad, 6

Let $ABCD$ a quadrilateral inscribed in a circumference, $l_1$ the parallel to $BC$ through $A$, and $l_2$ the parallel to $AD$ through $B$. The line $DC$ intersects $l_1$ and $l_2$ at $E$ and $F$, respectively. The perpendicular to $l_1$ through $A$ intersects $BC$ at $P$, and the perpendicular to $l_2$ through $B$ cuts $AD$ at $Q$. Let $\Gamma_1$ and $\Gamma_2$ be the circumferences that pass through the vertex of triangles $ADE$ and $BFC$, respectively. Prove that $\Gamma_1$ and $\Gamma_2$ are tangent to each other if and only if $DP$ is perpendicular to $CQ$.

2004 Turkey Junior National Olympiad, 1

Tags: geometry , incenter
Let $[AD]$ and $[CE]$ be internal angle bisectors of $\triangle ABC$ such that $D$ is on $[BC]$ and $E$ is on $[AB]$. Let $K$ and $M$ be the feet of perpendiculars from $B$ to the lines $AD$ and $CE$, respectively. If $|BK|=|BM|$, show that $\triangle ABC$ is isosceles.

2024 UMD Math Competition Part I, #23

Tags: algebra
For how many pairs of integers $(m, n)$ with $0 < m \le n \le 50$ do there exist precisely four triples of integers $(x, y, z)$ satisfying the following system? \[\begin{cases} x^2 + y+ z = m \\ x + y^2 + z = n\end{cases}\] \[\rm a. ~180\qquad \mathrm b. ~182\qquad \mathrm c. ~186 \qquad\mathrm d. ~188\qquad\mathrm e. ~190\]