This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2020 Sharygin Geometry Olympiad, 16

Tags: geometry
Cevians $AP$ and $AQ$ of a triangle $ABC$ are symmetric with respect to its bisector. Let $X$, $Y$ be the projections of $B$ to $AP$ and $AQ$ respectively, and $N$, $M$ be the projections of $C$ to $AP$ and $AQ$ respectively. Prove that $XM$ and $NY$ meet on $BC$.

1997 All-Russian Olympiad Regional Round, 11.6

Prove that if $1 < a < b < c$, then $$\log_a(\log_a b) + \log_b(\log_b c) + \log_c(\log_c a) > 0.$$

2010 China Girls Math Olympiad, 2

In triangle $ABC$, $AB = AC$. Point $D$ is the midpoint of side $BC$. Point $E$ lies outside the triangle $ABC$ such that $CE \perp AB$ and $BE = BD$. Let $M$ be the midpoint of segment $BE$. Point $F$ lies on the minor arc $\widehat{AD}$ of the circumcircle of triangle $ABD$ such that $MF \perp BE$. Prove that $ED \perp FD.$ [asy] defaultpen(fontsize(10)); size(6cm); pair A = (3,10), B = (0,0), C = (6,0), D = (3,0), E = intersectionpoints( Circle(B, 3), C--(C+100*dir(B--A)*dir(90)) )[1], M = midpoint(B--E), F = intersectionpoints(M--(M+50*dir(E--B)*dir(90)), circumcircle(A,B,D))[0]; dot(A^^B^^C^^D^^E^^M^^F); draw(B--C--A--B--E--D--F--M^^circumcircle(A,B,D)); pair point = extension(M,F,A,D); pair[] p={A,B,C,D,E,F,M}; string s = "A,B,C,D,E,F,M"; int size = p.length; real[] d; real[] mult; for(int i = 0; i<size; ++i) { d[i] = 0; mult[i] = 1;} d[4] = -50; string[] k= split(s,","); for(int i = 0;i<p.length;++i) { label("$"+k[i]+"$",p[i],mult[i]*dir(point--p[i])*dir(d[i])); }[/asy]

I Soros Olympiad 1994-95 (Rus + Ukr), 11.6

A natural number $n$ is given and written in a row of $n$ numbers, each of which is equal to $0$ or $1$. Then $n - 1$ numbers are written below in a row - one number under each pair of adjacent numbers of the first row. At the same time, $0$ is written under a pair of identical numbers. and under a pair of different ones $1$. Then, under the second row, the third of $n- 2$ numbers is similarly written, etc., until we get a triangular table with $n$ rows. For a given $n$, find the largest possible number of units in such a table.

Novosibirsk Oral Geo Oly IX, 2023.4

In a trapezoid, the length of one of the diagonals is equal to the sum of the lengths of the bases, and the angle between the diagonals is $60$ degrees. Prove that this trapezoid is isosceles.

Geometry Mathley 2011-12, 7.4

Let $ABCD$ be a quadrilateral inscribed in the circle $(O)$. Let $(K)$ be an arbitrary circle passing through $B,C$. Circle $(O_1)$ tangent to $AB,AC$ and is internally tangent to $(K)$. Circle $(O_2)$ touches $DB,DC$ and is internally tangent to $(K)$. Prove that one of the two external common tangents of $(O_1)$ and $(O_2)$ is parallel to $AD$. Trần Quang Hùng

2024 Mathematical Talent Reward Programme, 2

Find positive reals $a,b,c$ such that: $$\sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{c+a}} + \sqrt{\frac{c}{a+b}} = 2$$

2013 AMC 12/AHSME, 22

Tags: probability
A palindrome is a nonnegative integer number that reads the same forwards and backwards when written in base 10 with no leading zeros. A 6-digit palindrome $n$ is chosen uniformly at random. What is the probability that $\frac{n}{11}$ is also a palindrome? $ \textbf{(A)} \ \frac{8}{25} \qquad \textbf{(B)} \ \frac{33}{100} \qquad \textbf{(C)} \ \frac{7}{20} \qquad \textbf{(D)} \ \frac{9}{25} \qquad \textbf{(E)} \ \frac{11}{30}$

2007 Harvard-MIT Mathematics Tournament, 11

Tags:
Let $A_{10}$ denote the answer to problem $10$. Two circles lie in the plane; denote the lengths of the internal and external tangents between these two circles by $x$ and $y$, respectively. Given that the product of the radii of these two circles is $15/2$, and that the distance between their centers is $A_{10}$, determine $y^2-x^2$.

1999 Junior Balkan MO, 3

Let $S$ be a square with the side length 20 and let $M$ be the set of points formed with the vertices of $S$ and another 1999 points lying inside $S$. Prove that there exists a triangle with vertices in $M$ and with area at most equal with $\frac 1{10}$. [i]Yugoslavia[/i]

2011 AIME Problems, 1

Jar A contains four liters of a solution that is $45\%$ acid. Jar B contains five liters of a solution that is $48\%$ acid. Jar C contains one liter of a solution that is $k\%$ acid. From jar C, $\tfrac{m}{n}$ liters of the solution is added to jar A, and the remainder of the solution in jar C is added to jar B. At the end, both jar A and jar B contain solutions that are $50\%$ acid. Given that $m$ and $n$ are relatively prime positive integers, find $k+m+n$.

2015 ASDAN Math Tournament, 5

Tags: team test
Laurie loves multiplying numbers in her head. One day she decides to multiply two $2$-digit numbers $x$ and $y$ such that $x\leq y$ and the two numbers collectively have at least three distinct digits. Unfortunately, she accidentally remembers the digits of each number in the opposite order (for example, instead of remembering $51$ she remembers $15$). Surprisingly, the product of the two numbers after flipping the digits is the same as the product of the two original numbers. How many possible pairs of numbers could Laurie have tried to multiply?

2010 Ukraine Team Selection Test, 5

Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram. Prove that $GR=GS$. [i]Proposed by Hossein Karke Abadi, Iran[/i]

2014 Contests, 1

Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that \[ xf(y) + f(xf(y)) - xf(f(y)) - f(xy) = 2x + f(y) - f(x+y)\] holds for all $x,y \in \mathbb{R}$.

2017 May Olympiad, 2

Is it possible to paint $33$ squares on a $9\times 9$ game board, so that each row and each column of the board has a maximum of $4$ painted squares, but if we also paint any other square a row or column appears that has $5$ squares painted?

2010 USAJMO, 4

A triangle is called a parabolic triangle if its vertices lie on a parabola $y = x^2$. Prove that for every nonnegative integer $n$, there is an odd number $m$ and a parabolic triangle with vertices at three distinct points with integer coordinates with area $(2^nm)^2$.

2016 Kyiv Mathematical Festival, P3

Tags: inequalities
1) Let $a,b,c\ge0$ and $ab+bc+ca=2.$ Prove that \[\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}+2(a+b+c)\ge6.\] 2) Let $a,b,c\ge0$ and $ab+bc+ca=3.$ Prove that \[\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\ge\frac{3}{2}.\]

2022 IMO Shortlist, A8

Tags: sequence , algebra
For a positive integer $n$, an [i]$n$-sequence[/i] is a sequence $(a_0,\ldots,a_n)$ of non-negative integers satisfying the following condition: if $i$ and $j$ are non-negative integers with $i+j \leqslant n$, then $a_i+a_j \leqslant n$ and $a_{a_i+a_j}=a_{i+j}$. Let $f(n)$ be the number of $n$-sequences. Prove that there exist positive real numbers $c_1$, $c_2$, and $\lambda$ such that \[c_1\lambda^n<f(n)<c_2\lambda^n\] for all positive integers $n$.

2023 MOAA, 21

Tags:
In obtuse triangle $ABC$ where $\angle B > 90^\circ$ let $H$ and $O$ be its orthocenter and circumcenter respectively. Let $D$ be the foot of the altitude from $A$ to $HC$ and $E$ be the foot of the altitude from $B$ to $AC$ such that $O,E,D$ lie on a line. If $OC=8$ and $OE=4$, find the area of triangle $HAB$. [i]Proposed by Harry Kim[/i]

2005 IberoAmerican Olympiad For University Students, 1

Let $P(x,y)=(x^2y^3,x^3y^5)$, $P^1=P$ and $P^{n+1}=P\circ P^n$. Also, let $p_n(x)$ be the first coordinate of $P^n(x,x)$, and $f(n)$ be the degree of $p_n(x)$. Find \[\lim_{n\to\infty}f(n)^{1/n}\]

2009 AMC 12/AHSME, 17

Let $ a\plus{}ar_1\plus{}ar_1^2\plus{}ar_1^3\plus{}\cdots$ and $ a\plus{}ar_2\plus{}ar_2^2\plus{}ar_2^3\plus{}\cdots$ be two different infinite geometric series of positive numbers with the same first term. The sum of the first series is $ r_1$, and the sum of the second series is $ r_2$. What is $ r_1\plus{}r_2$? $ \textbf{(A)}\ 0\qquad \textbf{(B)}\ \frac{1}{2}\qquad \textbf{(C)}\ 1\qquad \textbf{(D)}\ \frac{1\plus{}\sqrt{5}}{2}\qquad \textbf{(E)}\ 2$

2010 Hanoi Open Mathematics Competitions, 6

Let $a,b$ be the roots of the equation $x^2-px+q = 0$ and let $c, d$ be the roots of the equation $x^2 - rx + s = 0$, where $p, q, r,s$ are some positive real numbers. Suppose that $M =\frac{2(abc + bcd + cda + dab)}{p^2 + q^2 + r^2 + s^2}$ is an integer. Determine $a, b, c, d$.

1992 Nordic, 4

Peter has many squares of equal side. Some of the squares are black, some are white. Peter wants to assemble a big square, with side equal to $n$ sides of the small squares, so that the big square has no rectangle formed by the small squares such that all the squares in the vertices of the rectangle are of equal colour. How big a square is Peter able to assemble?

2000 Moldova National Olympiad, Problem 4

Let $f:[0,1]\to\mathbb R$ be a continuous function such that $\int^1_0x^mf(x)dx=0$ for $m=0,1,\ldots,1999$. Prove that $f$ has at least $2000$ zeroes on the segment $[0,1]$.

2020 USAMTS Problems, 3:

Tags:
Find, with proof, all positive integers $n$ with the following property: There are only finitely many positive multiples of $n$ which have exactly $n$ positive divisors