This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2006 China Second Round Olympiad, 2

Tags: algebra
Let $x,y$ be real numbers. Define a sequence $\{a_n \}$ through the recursive formula \[ a_0=x,a_1=y,a_{n+1}=\frac{a_na_{n-1}+1}{a_n+a_{n-1}},\] Find $a_n$.

2016 Math Prize for Girls Problems, 18

Tags:
Let $T = \{ 1, 2, 3, \dots, 14, 15 \}$. Say that a subset $S$ of $T$ is [i]handy[/i] if the sum of all the elements of $S$ is a multiple of $5$. For example, the empty set is handy (because its sum is 0) and $T$ itself is handy (because its sum is 120). Compute the number of handy subsets of $T$.

2015 USA TSTST, 6

A [i]Nim-style game[/i] is defined as follows. Two positive integers $k$ and $n$ are specified, along with a finite set $S$ of $k$-tuples of integers (not necessarily positive). At the start of the game, the $k$-tuple $(n, 0, 0, ..., 0)$ is written on the blackboard. A legal move consists of erasing the tuple $(a_1,a_2,...,a_k)$ which is written on the blackboard and replacing it with $(a_1+b_1, a_2+b_2, ..., a_k+b_k)$, where $(b_1, b_2, ..., b_k)$ is an element of the set $S$. Two players take turns making legal moves, and the first to write a negative integer loses. In the event that neither player is ever forced to write a negative integer, the game is a draw. Prove that there is a choice of $k$ and $S$ with the following property: the first player has a winning strategy if $n$ is a power of 2, and otherwise the second player has a winning strategy. [i]Proposed by Linus Hamilton[/i]

2011 Today's Calculation Of Integral, 753

Find $\lim_{n\to\infty} \sum_{k=1}^{2n} \frac{n}{2n^2+3nk+k^2}.$

2021 AMC 12/AHSME Fall, 5

Tags:
Elmer the emu takes $44$ equal strides to walk between consecutive telephone poles on a rural road. Oscar the ostrich can cover the same distance in $12$ equal leaps. The telephone poles are evenly spaced, and the $41$st pole along this road is exactly one mile ($5280$ feet) from the first pole. How much longer, in feet, is Oscar's leap than Elmer's stride? $\textbf{(A) }6\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }15$

2018 Cono Sur Olympiad, 3

Define the product $P_n=1! \cdot 2!\cdot 3!\cdots (n-1)!\cdot n!$ a) Find all positive integers $m$, such that $\frac {P_{2020}}{m!}$ is a perfect square. b) Prove that there are infinite many value(s) of $n$, such that $\frac {P_{n}}{m!}$ is a perfect square, for at least two positive integers $m$.

1997 Slovenia National Olympiad, Problem 4

The expression $*3^5*3^4*3^3*3^2*3*1$ is given. Ana and Branka alternately change the signs $*$ to $+$ or $-$ (one time each turn). Can Branka, who plays second, do this so as to obtain an expression whose value is divisible by $7$?

2006 AMC 10, 22

Two farmers agree that pigs are worth $ \$300$ and that goats are worth $ \$210$. When one farmer owes the other money, he pays the debt in pigs or goats, with ``change'' received in the form of goats or pigs as necessary. (For example, a $ \$390$ debt could be paid with two pigs, with one goat received in change.) What is the amount of the smallest positive debt that can be resolved in this way? $ \textbf{(A) } \$5\qquad \textbf{(B) } \$10\qquad \textbf{(C) } \$30\qquad \textbf{(D) } \$90\qquad \textbf{(E) } \$210$

Ukraine Correspondence MO - geometry, 2006.3

Find the locus of the points of intersection of the altitudes of the triangles inscribed in a given circle.

2023 Philippine MO, 3

In $\triangle ABC$, $AB > AC$. Point $P$ is on line $BC$ such that $AP$ is tangent to its circumcircle. Let $M$ be the midpoint of $AB$, and suppose the circumcircle of $\triangle PMA$ meets line $AC$ again at $N$. Point $Q$ is the reflection of $P$ with respect to the midpoint of segment $BC$. The line through $B$ parallel to $QN$ meets $PN$ at $D$, and the line through $P$ parallel to $DM$ meets the circumcircle of $\triangle PMB$ again at $E$. Show that the lines $PM$, $BE$, and $AC$ are concurrent.

2010 Princeton University Math Competition, 7

Tags:
Matt is asked to write the numbers from 1 to 10 in order, but he forgets how to count. He writes a permutation of the numbers $\{1, 2, 3\ldots , 10\}$ across his paper such that: [list] [*]The leftmost number is 1. [*]The rightmost number is 10. [*]Exactly one number (not including 1 or 10) is less than both the number to its immediate left and the number to its immediate right.[/list] How many such permutations are there?

2001 China Team Selection Test, 2

Let \(L_3 = \{3\}\), \(L_n = \{3, 4, \ldots, h\}\) (where \(h > 3\)). For any given integer \(n \geq 3\), consider a graph \(G\) with \(n\) vertices that contains a Hamiltonian cycle \(C\) and has more than \(\frac{n^2}{4}\) edges. For which lengths \(l \in L_n\) must the graph \(G\) necessarily contain a cycle of length \(l\)?

Ukraine Correspondence MO - geometry, 2003.11

Tags: hexagon , geometry , ratio
Let $ABCDEF$ be a convex hexagon, $P, Q, R$ be the intersection points of $AB$ and $EF$, $EF$ and $CD$, $CD$ and $AB$. $S, T,UV$ are the intersection points of $BC$ and $DE$, $DE$ and $FA$, $FA$ and $BC$, respectively. Prove that if $$\frac{AB}{PR}=\frac{CD}{RQ}=\frac{EF}{QP},$$ then $$\frac{BC}{US}=\frac{DE}{ST}=\frac{FA}{TU}.$$

2023 Bundeswettbewerb Mathematik, 4

Given a real number $\alpha$ in whose decimal representation $\alpha=0,a_1a_2a_3\dots$ each decimal digit $a_i$ $(i=1,2,3,\dots)$ is a prime number. The decimal digits are arranged along the path indicated by arrows in the accompanying figure, which can be thought of as continuing infinitely to the right and downward. For each $m\geq 1$, the decimal representation of a real number $z_m$ is formed by writing before the decimal point the digit 0 and after the decimal point the sequence of digits of the $m$-th row from the top read from left to right from the adjacent arrangement. In an analogous way, for all $n\geq 1$, the real numbers $s_n$ are formed with the digits of the $n$-th column from the left to be read from top to bottom. For example, $z_3=0,a_5a_6a_7a_{12}a_{23}a_{28}\dots$ and $s_2=0,a_2a_3a_6a_{15}a_{18}a_{35}\dots$. Show: (a) If $\alpha$ is rational, then all $z_m$ and all $s_n$ are rational. (b) The converse of the statement formulated in (a) is false.

2021 Iran MO (3rd Round), 3

Given triangle $ABC$ variable points $X$ and $Y$ are chosen on segments $AB$ and $AC$, respectively. Point $Z$ on line $BC$ is chosen such that $ZX=ZY$. The circumcircle of $XYZ$ cuts the line $BC$ for the second time at $T$. Point $P$ is given on line $XY$ such that $\angle PTZ = 90^ \circ$. Point $Q$ is on the same side of line $XY$ with $A$ furthermore $\angle QXY = \angle ACP$ and $\angle QYX = \angle ABP$. Prove that the circumcircle of triangle $QXY$ passes through a fixed point (as $X$ and $Y$ vary).

1966 IMO Longlists, 16

We are given a circle $K$ with center $S$ and radius $1$ and a square $Q$ with center $M$ and side $2$. Let $XY$ be the hypotenuse of an isosceles right triangle $XY Z$. Describe the locus of points $Z$ as $X$ varies along $K$ and $Y$ varies along the boundary of $Q.$

2000 Belarusian National Olympiad, 4

The lateral sides and diagonals of a trapezoid intersect a line $l$, determining three equal segments on it. Must $l$ be parallel to the bases of the trapezoid?

2006 National Olympiad First Round, 15

Tags:
How many different real roots does the equation $x^2-5x-4\sqrt x + 13 = 0$ have? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4 $

2002 National High School Mathematics League, 10

Tags: function
$f(x)$ is a function defined on $\mathbb{R}$. $f(1)=1$, and for all $x\in\mathbb{R}$, $f(x+5)\geq x+5,f(x+1)\leq f(x)+1$. If $g(x)=f(x)+1-x$, then $g(2002)=$________.

2022 CHMMC Winter (2022-23), 5

Tags: geometry
Let $ABC$ be a triangle with $AB = 6$, $AC = 8$, $BC = 7$. Let $H$ be the orthocenter of $ABC$. Let $D \ne H$ be a point on $\overline{AH}$ such that $\angle HBD =\frac32 \angle CAB+ \frac12 \angle ABC - \frac12 \angle BCA$. Find $DH$.

2008 Estonia Team Selection Test, 5

Points $A$ and $B$ are fixed on a circle $c_1$. Circle $c_2$, whose centre lies on $c_1$, touches line $AB$ at $B$. Another line through $A$ intersects $c_2$ at points $D$ and $E$, where $D$ lies between $A$ and $E$. Line $BD$ intersects $c_1$ again at $F$. Prove that line $EB$ is tangent to $c_1$ if and only if $D$ is the midpoint of the segment $BF$.

1995 Belarus National Olympiad, Problem 6

Tags: algebra
Let $p$ and $q$ be distinct positive integers. Prove that at least one of the equations $x^2+px+q=0$ and $x^2+qx+p=0$ has a real root.

2007 AMC 10, 15

Tags: rhombus , geometry
Four circles of radius $ 1$ are each tangent to two sides of a square and externally tangent to a circle of radius $ 2$, as shown. What is the area of the square? [asy]unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); real h=3*sqrt(2)/2; pair O0=(0,0), O1=(h,h), O2=(-h,h), O3=(-h,-h), O4=(h,-h); pair X=O0+2*dir(30), Y=O2+dir(45); draw((-h-1,-h-1)--(-h-1,h+1)--(h+1,h+1)--(h+1,-h-1)--cycle); draw(Circle(O0,2)); draw(Circle(O1,1)); draw(Circle(O2,1)); draw(Circle(O3,1)); draw(Circle(O4,1)); draw(O0--X); draw(O2--Y); label("$2$",midpoint(O0--X),NW); label("$1$",midpoint(O2--Y),SE);[/asy]$ \textbf{(A)}\ 32 \qquad \textbf{(B)}\ 22 \plus{} 12\sqrt {2}\qquad \textbf{(C)}\ 16 \plus{} 16\sqrt {3}\qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 36 \plus{} 16\sqrt {2}$

1988 AMC 8, 13

Tags:
If rose bushes are spaced about $1$ foot apart, approximately how many bushes are needed to surround a circular patio whose radius is $12$ feet? $ \text{(A)}\ 12\qquad\text{(B)}\ 38\qquad\text{(C)}\ 48\qquad\text{(D)}\ 75\qquad\text{(E)}\ 450 $

2014 India PRMO, 4

In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is $17$. What is the greatest possible perimeter of the triangle?