This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

LMT Team Rounds 2021+, 2

How many ways are there to permute the letters $\{S,C,R, A,M,B,L,E\}$ without the permutation containing the substring $L AME$?

2013 Stanford Mathematics Tournament, 9

Tags:
A tree has 10 pounds of apples at dawn. Every afternoon, a bird comes and eats x pounds of apples. Overnight, the amount of food on the tree increases by 10%. What is the maximum value of x such that the bird can sustain itself indefinitely on the tree without the tree running out of food?

2009 Stanford Mathematics Tournament, 13

A number $N$ has $2009$ positive factors. What is the maximum number of positive factors that $N^2$ could have?

1979 IMO Shortlist, 26

Prove that the functional equations \[f(x + y) = f(x) + f(y),\] \[ \text{and} \qquad f(x + y + xy) = f(x) + f(y) + f(xy) \quad (x, y \in \mathbb R)\] are equivalent.

1965 Putnam, A4

Tags:
At a party, assume that no boy dances with every girl but each girl dances with at least one boy. Prove that there are two couples $gb$ and $g'b'$ which dance whereas $b$ does not dance with $g'$ nor does $g$ dance with $b'$.

2012 Uzbekistan National Olympiad, 4

Given $a,b$ and $c$ positive real numbers with $ab+bc+ca=1$. Then prove that $\frac{a^3}{1+9b^2ac}+\frac{b^3}{1+9c^2ab}+\frac{c^3}{1+9a^2bc} \geq \frac{(a+b+c)^3}{18}$

1962 All-Soviet Union Olympiad, 6

Tags: geometry
Given the lengths $AB$ and $BC$ and the fact that the medians to those two sides are perpendicular, construct the triangle $ABC$.

1957 Moscow Mathematical Olympiad, 370

* Three equal circles are tangent to each other externally and to the fourth circle internally. Tangent lines are drawn to the circles from an arbitrary point on the fourth circle. Prove that the sum of the lengths of two tangent lines equals the length of the third tangent.

2020 New Zealand MO, 7

Josie and Ross are playing a game on a $20 \times 20$ chessboard. Initially the chessboard is empty. The two players alternately take turns, with Josie going first. On Josie’s turn, she selects any two different empty cells, and places one white stone in each of them. On Ross’ turn, he chooses any one white stone currently on the board, and replaces it with a black stone. If at any time there are $ 8$ consecutive cells in a line (horizontally or vertically) all of which contain a white stone, Josie wins. Is it possible that Ross can stop Josie winning - regardless of how Josie plays?

1995 Taiwan National Olympiad, 1

Let $P(x)=a_{0}+a_{1}x+...+a_{n}x^{n}\in\mathbb{C}[x]$ , where $a_{n}=1$. The roots of $P(x)$ are $b_{1},b_{2},...,b_{n}$, where $|b_{1}|,|b_{2}|,...,|b_{j}|>1$ and $|b_{j+1}|,...,|b_{n}|\leq 1$. Prove that $\prod_{i=1}^{j}|b_{i}|\leq\sqrt{|a_{0}|^{2}+|a_{1}|^{2}+...+|a_{n}|^{2}}$.

2010 Sharygin Geometry Olympiad, 6

Let $E, F$ be the midpoints of sides $BC, CD$ of square $ABCD$. Lines $AE$ and $BF$ meet at point $P$. Prove that $\angle PDA = \angle AED$.

2010 Princeton University Math Competition, 6

All the diagonals of a regular decagon are drawn. A regular decagon satisfies the property that if three diagonals concur, then one of the three diagonals is a diameter of the circumcircle of the decagon. How many distinct intersection points of diagonals are in the interior of the decagon?

2023 UMD Math Competition Part I, #19

Tags: algebra
Three positive real numbers $a, b, c$ satisfy $a^b = 343, b^c = 10, a^c = 7.$ Find $b^b.$ $$ \mathrm a. ~ 1000\qquad \mathrm b.~900\qquad \mathrm c. ~1200 \qquad \mathrm d. ~4000 \qquad \mathrm e. ~100 $$

2020 CMIMC Team, 10

Tags: team
Let $ABC$ be a triangle. The incircle $\omega$ of $\triangle ABC$, which has radius $3$, is tangent to $\overline{BC}$ at $D$. Suppose the length of the altitude from $A$ to $\overline{BC}$ is $15$ and $BD^2 + CD^2 = 33$. What is $BC$?

2002 AMC 10, 7

Tags:
The dimensions of a rectangular box in inches are all positive integers and the volume of the box is $2002\text{ in}^3$. Find the minimum possible sum in inches of the three dimensions. $\textbf{(A) }36\qquad\textbf{(B) }38\qquad\textbf{(C) }42\qquad\textbf{(D) }44\qquad\textbf{(E) }92$

2024 CCA Math Bonanza, T3

Tags:
Find the number of triples of integers $(a, b, c)$ where $1 \le a < b < c \le 20$ and $a$, $b$, $c$ form the sides of a non-degenerate triangle. [i]Team #3[/i]

Estonia Open Junior - geometry, 2016.1.5

A right triangle $ABC$ has the right angle at vertex $A$. Circle $c$ passes through vertices $A$ and $B$ of the triangle $ABC$ and intersects the sides $AC$ and $BC$ correspondingly at points $D$ and $E$. The line segment $CD$ has the same length as the diameter of the circle $c$. Prove that the triangle $ABE$ is isosceles.

JBMO Geometry Collection, 2001

Let $ABC$ be an equilateral triangle and $D$, $E$ points on the sides $[AB]$ and $[AC]$ respectively. If $DF$, $EF$ (with $F\in AE$, $G\in AD$) are the interior angle bisectors of the angles of the triangle $ADE$, prove that the sum of the areas of the triangles $DEF$ and $DEG$ is at most equal with the area of the triangle $ABC$. When does the equality hold? [i]Greece[/i]

2018 Brazil Undergrad MO, 4

Tags: set
Consider the property that each a element of a group $G$ satisfies $a ^ 2 = e$, where e is the identity element of the group. Which of the following statements is not always valid for a group $G$ with this property? (a) $G$ is commutative (b) $G$ has infinite or even order (c) $G$ is Noetherian (d) $G$ is vector space over $\mathbb{Z}_2$

2022 Flanders Math Olympiad, 1

The points $A, B, C, D$ lie in that order on a circle. The segments $AC$ and $BD$ intersect at the point $P$. The point $B'$ lies on the line $AB$ such that $A$ is between $B$ and $B'$ and $|AB'| = |DP |$. The point $C'$ lies on the line $CD$ such that $D$ is between $C$ and $C'$ lies and $|DC' | = |AP|$. Prove that $\angle B'PC' = \angle ABD'$. [img]https://cdn.artofproblemsolving.com/attachments/2/2/7ec65246ff5ecfebc25ca13f3709d1791ceb6c.png[/img] =

2012 NIMO Problems, 10

A [i]triangulation[/i] of a polygon is a subdivision of the polygon into triangles meeting edge to edge, with the property that the set of triangle vertices coincides with the set of vertices of the polygon. Adam randomly selects a triangulation of a regular $180$-gon. Then, Bob selects one of the $178$ triangles in this triangulation. The expected number of $1^\circ$ angles in this triangle can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Compute $100a + b$. [i]Proposed by Lewis Chen[/i]

ICMC 3, 6

Tags:
Let \(\varepsilon < \frac{1}{2}\) be a positive real number and let \(U_{\varepsilon}\) denote the set of real numbers that differ from their nearest integer by at most \(\varepsilon\). Prove that there exists a positive integer \(m\) such that for any real number \(x\), the sets \(\left\{x, 2x, 3x, . . . , mx\right\}\) and \(U_{\varepsilon}\) have at least one element in common. proposed by the ICMC Problem Committee

1951 Moscow Mathematical Olympiad, 198

* On a plane, given points $A, B, C$ and angles $\angle D, \angle E, \angle F$ each less than $180^o$ and the sum equal to $360^o$, construct with the help of ruler and protractor a point $O$ such that $\angle AOB = \angle D, \angle BOC = \angle E$ and $\angle COA = \angle F.$

2004 Singapore Team Selection Test, 2

Let $ABC$ be an isosceles triangle with $AC=BC$, whose incentre is $I$. Let $P$ be a point on the circumcircle of the triangle $AIB$ lying inside the triangle $ABC$. The lines through $P$ parallel to $CA$ and $CB$ meet $AB$ at $D$ and $E$, respectively. The line through $P$ parallel to $AB$ meets $CA$ and $CB$ at $F$ and $G$, respectively. Prove that the lines $DF$ and $EG$ intersect on the circumcircle of the triangle $ABC$. [i]Proposed by Hojoo Lee, Korea[/i]

2010 Oral Moscow Geometry Olympiad, 3

Two circles $w_1$ and $w_2$ intersect at points $A$ and $B$. Tangents $\ell_1$ and $\ell_2$ respectively are drawn to them through point $A$. The perpendiculars dropped from point $B$ to $\ell_2$ and $\ell_1$ intersects the circles $w_1$ and $w_2$, respectively, at points $K$ and $N$. Prove that points $K, A$ and $N$ lie on one straight line.