Found problems: 85335
2013 Singapore MO Open, 5
Let $ABC$ be a triangle with integral side lengths such that $\angle A=3\angle B$. Find the minimum value of its perimeter.
1975 AMC 12/AHSME, 11
Let $ P$ be an interior point of circle $ K$ other than the center of $ K$. Form all chords of $ K$ which pass through $ P$, and determine their midpoints. The locus of these midpoints is
$ \textbf{(A)}\ \text{a circle with one point deleted} \qquad$
$ \textbf{(B)}\ \text{a circle if the distance from } P \text{ to the center of } K \text{ is less than}$
$ \text{one half the radius of } K \text{; otherwise a circular arc of less than}$
$ 360^{\circ}\qquad$
$ \textbf{(C)}\ \text{a semicircle with one point deleted} \qquad$
$ \textbf{(D)}\ \text{a semicircle} \qquad$
$ \textbf{(E)}\ \text{a circle}$
2020 Purple Comet Problems, 19
Find the least prime number greater than $1000$ that divides $2^{1010} \cdot 23^{2020} + 1$.
2021-2022 OMMC, 12
Katelyn is building an integer (in base $10$). She begins with $9$. Each step, she appends a randomly chosen digit from $0$ to $9$ inclusive to the right end of her current integer. She stops immediately when the current integer is $0$ or $1$ (mod $11$). The probability that the final integer ends up being $0$ (mod $11$) is $\tfrac ab$ for coprime positive integers $a$, $b$. Find $a + b$.
[i]Proposed by Evan Chang[/i]
2022 IFYM, Sozopol, 5
Find the number of subsets of $\{1, 2,... , 2100\}$ such that each has sum of the elements giving a remainder of $3$ when divided by $7$.
CIME I 2018, 7
Let $A, B, C, D$ be points, in order, on a straight line such that $AB=BC=CD$. Let $E$ be a point closer to $B$ than $D$ such that $BE=EC=CD$ and let $F$ be the midpoint of $DE$. Let $AF$ intersect $EC$ at $G$ and let $BF$ intersect $EC$ at $H$. If $[BHC]+[GHF]=1$, then $AD^2 = \frac{a\sqrt{b}}{c}$ where $a,b,$ and $c$ are positive integers, $a$ and $c$ are relatively prime, and $b$ is not divisible by the square of any prime. Find $a+b+c$.
[i]Proposed by [b]AOPS12142015[/b][/i]
1973 AMC 12/AHSME, 3
The stronger Goldbach conjecture states that any even integer greater than 7 can be written as the sum of two different prime numbers. For such representations of the even number 126, the largest possible difference between the two primes is
$ \textbf{(A)}\ 112 \qquad
\textbf{(B)}\ 100 \qquad
\textbf{(C)}\ 92 \qquad
\textbf{(D)}\ 88 \qquad
\textbf{(E)}\ 80$
2022 Bulgaria National Olympiad, 5
Let $ABC$ be an isosceles triangle with $AB=4$, $BC=CA=6$. On the segment $AB$ consecutively lie points $X_{1},X_{2},X_{3},\ldots$ such that the lengths of the segments $AX_{1},X_{1}X_{2},X_{2}X_{3},\ldots$ form an infinite geometric progression with starting value $3$ and common ratio $\frac{1}{4}$. On the segment $CB$ consecutively lie points $Y_{1},Y_{2},Y_{3},\ldots$ such that the lengths of the segments $CY_{1},Y_{1}Y_{2},Y_{2}Y_{3},\ldots$ form an infinite geometric progression with starting value $3$ and common ratio $\frac{1}{2}$. On the segment $AC$ consecutively lie points $Z_{1},Z_{2},Z_{3},\ldots$ such that the lengths of the segments $AZ_{1},Z_{1}Z_{2},Z_{2}Z_{3},\ldots$ form an infinite geometric progression with starting value $3$ and common ratio $\frac{1}{2}$. Find all triplets of positive integers $(a,b,c)$ such that the segments $AY_{a}$, $BZ_{b}$ and $CX_{c}$ are concurrent.
2022 Sharygin Geometry Olympiad, 8.3
A circle $\omega$ and a point $P$ not lying on it are given. Let $ABC$ be an arbitrary equilateral triangle inscribed into $\omega$ and $A', B', C'$ be the projections of $P$ to $BC, CA, AB$. Find the locus of centroids of triangles $A' B'C'$.
2002 Manhattan Mathematical Olympiad, 2
One out of every seven mathematicians is a philosopher, and one out of every nine philosophers is a mathematician. Are there more philosophers or mathematicians?
1960 AMC 12/AHSME, 18
The pair of equations $3^{x+y}=81$ and $81^{x-y}=3$ has:
$ \textbf{(A)}\ \text{no common solution} \qquad\textbf{(B)}\ \text{the solution} \text{ } x=2, y=2\qquad$
$\textbf{(C)}\ \text{the solution} \text{ } x=2\frac{1}{2}, y=1\frac{1}{2} \qquad$
$\textbf{(D)}\text{ a common solution in positive and negative integers} \qquad$
$\textbf{(E)}\ \text{none of these} $
2011 Today's Calculation Of Integral, 766
Let $f(x)$ be a continuous function defined on $0\leq x\leq \pi$ and satisfies $f(0)=1$ and
\[\left\{\int_0^{\pi} (\sin x+\cos x)f(x)dx\right\}^2=\pi \int_0^{\pi}\{f(x)\}^2dx.\]
Evaluate $\int_0^{\pi} \{f(x)\}^3dx.$
2020 ABMC, 2020 Nov
[b]p1.[/b] A large square is cut into four smaller, congruent squares. If each of the smaller squares has perimeter $4$, what was the perimeter of the original square?
[b]p2.[/b] Pie loves to bake apples so much that he spends $24$ hours a day baking them. If Pie bakes a dozen apples in one day, how many minutes does it take Pie to bake one apple, on average?
[b]p3.[/b] Bames Jond is sent to spy on James Pond. One day, Bames sees James type in his $4$-digit phone password. Bames remembers that James used the digits $0$, $5$, and $9$, and no other digits, but he does not remember the order. How many possible phone passwords satisfy this condition?
[b]p4.[/b] What do you get if you square the answer to this question, add $256$ to it, and then divide by $32$?
[b]p5.[/b] Chloe the Horse and Flower the Chicken are best friends. When Chloe gets sad for any reason, she calls Flower, so Chloe must remember Flower's $3$ digit phone number, which can consist of any digits $0-5$. Given that the phone number's digits are unique and add to $5$, the number does not start with $0$, and the $3$ digit number is prime, what is the sum of all possible phone numbers?
[b]p6.[/b] Anuj has a circular pizza with diameter $A$ inches, which is cut into $B$ congruent slices, where $A$,$B$ are positive integers. If one of Anuj's pizza slices has a perimeter of $3\pi + 30$ inches, find $A + B$.
[b]p7.[/b] Bob really likes to study math. Unfortunately, he gets easily distracted by messages sent by friends. At the beginning of every minute, there is an $\frac{6}{10}$ chance that he will get a message from a friend. If Bob does get a message from a friend, there is a $\frac{9}{10}$ chance that he will look at the message, causing him to waste $30$ seconds before resuming his studying. If Bob doesn't get a message from a friend, there is a $\frac{3}{10}$ chance Bob will still check his messages hoping for a message from his friends, wasting $10$ seconds before he resumes his studying. What is the expected number of minutes in $100$ minutes for which Bob will be studying math?
[b]p8.[/b] Suppose there is a positive integer $n$ with $225$ distinct positive integer divisors. What is the minimum possible number of divisors of n that are perfect squares?
[b]p9.[/b] Let $a, b, c$ be positive integers. $a$ has $12$ divisors, $b$ has $8$ divisors, $c$ has $6$ divisors, and $lcm(a, b, c) = abc$. Let $d$ be the number of divisors of $a^2bc$. Find the sum of all possible values of $d$.
[b]p10.[/b] Let $\vartriangle ABC$ be a triangle with side lengths $AB = 17$, $BC = 28$, $AC = 25$. Let the altitude from $A$ to $BC$ and the angle bisector of angle $B$ meet at $P$. Given the length of $BP$ can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$ where $gcd(a, c) = 1$ and $b$ is not divisible by the square of any prime, find $a + b + c$.
[b]p11.[/b] Let $a$, $b$, and $c$ be the roots of the cubic equation $x^3-5x+3 = 0$. Let $S = a^4b+ab^4+a^4c+ac^4+b^4c+bc^4$. Find $|S|$.
[b]p12.[/b] Call a number palindromeish if changing a single digit of the number into a different digit results in a new six-digit palindrome. For example, the number $110012$ is a palindromeish number since you can change the last digit into a $1$, which results in the palindrome $110011$. Find the number of $6$ digit palindromeish numbers.
[b]p13.[/b] Let $P(x)$ be a polynomial of degree $3$ with real coecients and leading coecient $1$. Let the roots of $P(x)$ be $a$, $b$, $c$. Given that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}= 4$ and $a^2 + b^2 + c^2 = 36$, the coefficient of $x^2$ is negative, and $P(1) = 2$, let the $S$ be the sum of possible values of $P(0)$. Then $|S|$ can be expressed as $\frac{a + b\sqrt{c}}{d}$ for positive integers $a$, $b$, $c$, $d$ such that $gcd(a, b, d) = 1$ and $c$ is not divisible by the square of any prime. Find $a + b + c + d$.
[b]p14.[/b] Let $ABC$ be a triangle with side lengths $AB = 7$, $BC = 8$, $AC = 9$. Draw a circle tangent to $AB$ at $B$ and passing through $C$. Let the center of the circle be $O$. The length of $AO$ can be expressed as $\frac{a\sqrt{b}}{c\sqrt{d}}$ for positive integers $a$, $b$, $c$, $d$ where $gcd(a, c) = gcd(b, d) = 1$ and $b$,$ d$ are not divisible by the square of any prime. Find $a + b + c + d$.
[b]p15.[/b] Many students in Mr. Noeth's BC Calculus class missed their first test, and to avoid taking a makeup, have decided to never leave their houses again. As a result, Mr. Noeth decides that he will have to visit their houses to deliver the makeup tests. Conveniently, the $17$ absent students in his class live in consecutive houses on the same street. Mr. Noeth chooses at least three of every four people in consecutive houses to take a makeup. How many ways can Mr. Noeth select students to take makeups?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 Hungary-Israel Binational, 1
Squares $ABB_{1}A_{2}$ and $BCC_{1}B_{2}$ are externally drawn on the hypotenuse $AB$ and on the leg $BC$ of a right triangle $ABC$ . Show that the lines $CA_{2}$ and $AB_{2}$ meet on the perimeter of a square with the vertices on the perimeter of triangle $ABC .$
2006 Harvard-MIT Mathematics Tournament, 1
A nonzero polynomial $f(x)$ with real coefficients has the property that $f(x)=f^\prime(x)f^{\prime\prime}(x)$. What is the leading coefficient of $f(x)$?
2021 Serbia National Math Olympiad, 1
Let $a>1$ and $c$ be natural numbers and let $b\neq 0$ be an integer. Prove that there exists a natural number $n$ such that the number $a^n+b$ has a divisor of the form $cx+1$, $x\in\mathbb{N}$.
1987 IMO Longlists, 76
Given two sequences of positive numbers $\{a_k\}$ and $\{b_k\} \ (k \in \mathbb N)$ such that:
[b](i)[/b] $a_k < b_k,$
[b](ii) [/b] $\cos a_kx + \cos b_kx \geq -\frac 1k $ for all $k \in \mathbb N$ and $x \in \mathbb R,$
prove the existence of $\lim_{k \to \infty} \frac{a_k}{b_k}$ and find this limit.
2018 Brazil National Olympiad, 5
One writes, initially, the numbers $1,2,3,\dots,10$ in a board. An operation is to delete the numbers $a, b$ and write the number $a+b+\frac{ab}{f(a,b)}$, where $f(a, b)$ is the sum of all numbers in the board excluding $a$ and $b$, one will make this until remain two numbers $x, y$ with $x\geq y$. Find the maximum value of $x$.
2023 Balkan MO Shortlist, A5
Are there polynomials $P, Q$ with real coefficients, such that $P(P(x))\cdot Q(Q(x))$ has exactly $2023$ distinct real roots and $P(Q(x)) \cdot Q(P(x))$ has exactly $2024$ distinct real roots?
2017 USA TSTST, 4
Find all nonnegative integer solutions to $2^a + 3^b + 5^c = n!$.
[i]Proposed by Mark Sellke[/i]
1948 Moscow Mathematical Olympiad, 142
Find all possible arrangements of $4$ points on a plane, so that the distance between each pair of points is equal to either $a$ or $b$. For what ratios of $a : b$ are such arrangements possible?
2022 Sharygin Geometry Olympiad, 16
Let $ABCD$ be a cyclic quadrilateral, $E = AC \cap BD$, $F = AD \cap BC$. The bisectors of angles $AFB$ and $AEB$ meet $CD$ at points $X, Y$ . Prove that $A, B, X, Y$ are concyclic.
2008 AIME Problems, 9
A particle is located on the coordinate plane at $ (5,0)$. Define a [i]move[/i] for the particle as a counterclockwise rotation of $ \pi/4$ radians about the origin followed by a translation of $ 10$ units in the positive $ x$-direction. Given that the particle's position after $ 150$ moves is $ (p,q)$, find the greatest integer less than or equal to $ |p|\plus{}|q|$.
1999 AIME Problems, 15
Consider the paper triangle whose vertices are $(0,0), (34,0),$ and $(16,24).$ The vertices of its midpoint triangle are the midpoints of its sides. A triangular pyramid is formed by folding the triangle along the sides of its midpoint triangle. What is the volume of this pyramid?
2000 Harvard-MIT Mathematics Tournament, 6
Prove that every multiple of $3$ can be written as a sum of four cubes (positive or negatives).