This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1983 AMC 12/AHSME, 19

Point $D$ is on side $CB$ of triangle $ABC$. If \[ \angle{CAD} = \angle{DAB} = 60^\circ,\quad AC = 3\quad\mbox{ and }\quad AB = 6, \] then the length of $AD$ is $\text{(A)} \ 2 \qquad \text{(B)} \ 2.5 \qquad \text{(C)} \ 3 \qquad \text{(D)} \ 3.5 \qquad \text{(E)} \ 4$

1989 IMO Longlists, 88

Prove that the sequence $ (a_n)_{n \geq 0,}, a_n \equal{} [n \cdot \sqrt{2}],$ contains an infinite number of perfect squares.

2006 IMO, 5

Tags: root , algebra , polynomial
Let $P(x)$ be a polynomial of degree $n > 1$ with integer coefficients and let $k$ be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x)) \ldots ))$, where $P$ occurs $k$ times. Prove that there are at most $n$ integers $t$ such that $Q(t) = t$.

2021 Israel TST, 1

A pair of positive integers $(a,b)$ is called an [b]average couple[/b] if there exist positive integers $k$ and $c_1, \dots, c_k$ for which \[\frac{c_1+c_2+\cdots+c_k}{k}=a\qquad \text{and} \qquad \frac{s(c_1)+s(c_2)+\cdots+s(c_k)}{k}=b\] where $s(n)$ denotes the sum of digits of $n$ in decimal representation. Find the number of average couples $(a,b)$ for which $a,b<10^{10}$.

1998 Irish Math Olympiad, 2

The distances from a point $ P$ inside an equilateral triangle to the vertices of the triangle are $ 3,4$, and $ 5$. Find the area of the triangle.

2022 Thailand Online MO, 7

Let $p$ be a prime number, and let $a_1, a_2, \dots , a_p$ and $b_1, b_2, \dots , b_p$ be $2p$ (not necessarily distinct) integers chosen from the set $\{1, 2, \dots , p - 1\}$. Prove that there exist integers $i$ and $j$ such that $1 \le i < j \le p$ and $p$ divides $a_ib_j-a_jb_i$.

1965 Putnam, B3

Tags:
Prove that there are exactly three right-angled triangles whose sides are integers while the area is numerically equal to twice the perimeter.

1990 French Mathematical Olympiad, Problem 5

Tags: triangle , geometry
In a triangle $ABC$, $\Gamma$ denotes the excircle corresponding to $A$, $A',B',C'$ are the points of tangency of $\Gamma$ with $BC,CA,AB$ respectively, and $S(ABC)$ denotes the region of the plane determined by segments $AB',AC'$ and the arc $C'A'B'$ of $\Gamma$. Prove that there is a triangle $ABC$ of a given perimeter $p$ for which the area of $S(ABC)$ is maximal. For this triangle, give an approximate measure of the angle at $A$.

2007 National Olympiad First Round, 28

$n$ integers are arranged along a circle in such a way that each number is equal to the absolute value of the difference of the two numbers following that number in clockwise direction. If the sum of all numbers is $278$, how many different values can $n$ take? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 139 \qquad\textbf{(E)}\ \text{None of the above} $

2021 Auckland Mathematical Olympiad, 5

There are $13$ stones each of which weighs an integer number of grams. It is known that any $12$ of them can be put on two pans of a balance scale, six on each pan, so that they are in equilibrium (i.e., each pan will carry an equal total weight). Prove that either all stones weigh an even number of grams or all stones weigh an odd number of grams.

1989 China Team Selection Test, 2

Let $v_0 = 0, v_1 = 1$ and $v_{n+1} = 8 \cdot v_n - v_{n-1},$ $n = 1,2, ...$. Prove that in the sequence $\{v_n\}$ there aren't terms of the form $3^{\alpha} \cdot 5^{\beta}$ with $\alpha, \beta \in \mathbb{N}.$

2017 ASDAN Math Tournament, 6

Tags:
Compute $$\lim_{x\rightarrow0}\frac{\sqrt[5]{\cos x}-\sqrt[3]{\cos x}}{x^2}.$$

1969 Czech and Slovak Olympiad III A, 4

Determine all complex numbers $z$ such that \[\Bigl|z-\bigl|z+|z|\bigr|\Bigr|-|z|\sqrt3\ge0\] and draw the set of all such $z$ in complex plane.

1959 AMC 12/AHSME, 4

Tags: algebra
If $78$ is divided into three parts which are proportional to $1, \frac13, \frac16$, the middle part is: $ \textbf{(A)}\ 9\frac13 \qquad\textbf{(B)}\ 13\qquad\textbf{(C)}\ 17\frac13 \qquad\textbf{(D)}\ 18\frac13\qquad\textbf{(E)}\ 26 $

2018 Harvard-MIT Mathematics Tournament, 7

Anders is solving a math problem, and he encounters the expression $\sqrt{15!}$. He attempts to simplify this radical as $a\sqrt{b}$ where $a$ and $b$ are positive integers. The sum of all possible values of $ab$ can be expressed in the form $q\cdot 15!$ for some rational number $q$. Find $q$.

2017 AMC 10, 9

Tags: probability
A radio program has a quiz consisting of $3$ multiple-choice questions, each with $3$ choices. A contestant wins if he or she gets $2$ or more of the questions right. The contestant answers randomly to each question. What is the probability of winning? $\textbf{(A) } \frac{1}{27}\qquad \textbf{(B) } \frac{1}{9}\qquad \textbf{(C) } \frac{2}{9}\qquad \textbf{(D) } \frac{7}{27}\qquad \textbf{(E) } \frac{1}{2}$

2013-2014 SDML (Middle School), 3

Tags:
Simplify $\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$.

2004 National Olympiad First Round, 30

How many primes $p$ are there such that the number of positive divisors of $p^2+23$ is equal to $14$? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None of above} $

1994 IMO Shortlist, 4

There are $ n \plus{} 1$ cells in a row labeled from $ 0$ to $ n$ and $ n \plus{} 1$ cards labeled from $ 0$ to $ n$. The cards are arbitrarily placed in the cells, one per cell. The objective is to get card $ i$ into cell $ i$ for each $ i$. The allowed move is to find the smallest $ h$ such that cell $ h$ has a card with a label $ k > h$, pick up that card, slide the cards in cells $ h \plus{} 1$, $ h \plus{} 2$, ... , $ k$ one cell to the left and to place card $ k$ in cell $ k$. Show that at most $ 2^n \minus{} 1$ moves are required to get every card into the correct cell and that there is a unique starting position which requires $ 2^n \minus{} 1$ moves. [For example, if $ n \equal{} 2$ and the initial position is 210, then we get 102, then 012, a total of 2 moves.]

Today's calculation of integrals, 873

Let $a,\ b$ be positive real numbers. Consider the circle $C_1: (x-a)^2+y^2=a^2$ and the ellipse $C_2: x^2+\frac{y^2}{b^2}=1.$ (1) Find the condition for which $C_1$ is inscribed in $C_2$. (2) Suppose $b=\frac{1}{\sqrt{3}}$ and $C_1$ is inscribed in $C_2$. Find the coordinate $(p,\ q)$ of the point of tangency in the first quadrant for $C_1$ and $C_2$. (3) Under the condition in (1), find the area of the part enclosed by $C_1,\ C_2$ for $x\geq p$. 60 point

2013 National Chemistry Olympiad, 49

The silicon-oxygen bonds in $\ce{SiO2}$ are best described as ${ \textbf{(A)}\ \text{coordinate covalent}\qquad\textbf{(B)}\ \text{ionic}\qquad\textbf{(C)}\ \text{nonpolar covalent}\qquad\textbf{(D)}}\ \text{polar covalent}\qquad $

2018 Costa Rica - Final Round, 4

Determine if there exists a function f: $N^*\to N^*$ that satisfies that for all $n \in N^*$, $$10^{f (n)} <10n + 1 <10^{f (n) +1}.$$ Justify your answer. Note: $N^*$ denotes the set of positive integers.

1973 Canada National Olympiad, 3

Tags:
Prove that if $p$ and $p+2$ are prime integers greater than 3, then 6 is a factor of $p+1$.

2021 JHMT HS, 4

Tags: geometry
Triangle $ABC$ has side lengths $AC=3, \ BC=4,$ and $AB=5.$ Let $R$ be a point on the incircle $\omega$ of $\triangle{ABC}.$ The altitude from $C$ to $\overline{AB}$ intersects $\omega$ at points $P$ and $Q.$ Then, the greatest possible area of $\triangle{PQR}$ is $\tfrac{m\sqrt n}p,$ where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. Find $m+n+p.$

2012 Switzerland - Final Round, 10

Let $O$ be an inner point of an acute-angled triangle $ABC$. Let $A_1, B_1$ and $C_1$ be the projections of $O$ on the sides $BC, AC$ and $AB$ respectively . Let $P$ be the intersection of the perpendiculars on $B_1C_1$ and $A_1C_1$ from points$ A$ and $B$ respectilvey. Let $H$ be the projection of $P$ on $AB$. Show that points $A_1, B_1, C_1$ and $H$ lie on a circle.