Found problems: 85335
2006 Germany Team Selection Test, 2
In a room, there are $2005$ boxes, each of them containing one or several sorts of fruits, and of course an integer amount of each fruit.
[b]a)[/b] Show that we can find $669$ boxes, which altogether contain at least a third of all apples and at least a third of all bananas.
[b]b)[/b] Can we always find $669$ boxes, which altogether contain at least a third of all apples, at least a third of all bananas and at least a third of all pears?
2009 Brazil Team Selection Test, 1
Let $A, B, C, D, E$ points in circle of radius r, in that order, such that $AC = BD = CE = r$. The points $H_1, H_2, H_3$ are the orthocenters of the triangles $ACD$, $BCD$ and $BCE$, respectively. Prove that $H_1H_2H_3$ is a right triangle .
1994 USAMO, 5
Let $\, |U|, \, \sigma(U) \,$ and $\, \pi(U) \,$ denote the number of elements, the sum, and the product, respectively, of a finite set $\, U \,$ of positive integers. (If $\, U \,$ is the empty set, $\, |U| = 0, \, \sigma(U) = 0, \, \pi(U) = 1$.) Let $\, S \,$ be a finite set of positive integers. As usual, let $\, \binom{n}{k} \,$ denote $\, n! \over k! \, (n-k)!$. Prove that \[ \sum_{U \subseteq S} (-1)^{|U|} \binom{m - \sigma(U)}{|S|} = \pi(S) \] for all integers $\, m \geq \sigma(S)$.
2014 BMT Spring, 9
Leo and Paul are at the Berkeley BART station and are racing to San Francisco. Leo is planning to take the line that takes him directly to SF, and because he has terrible BART luck, his train will arrive in some integer number of minutes, with probability $\frac i{210}$ for $1\le i\le20$ at any given minute. Paul will take a second line, whose trains always arrive before Leo’s train, with uniform probability. However, Paul must also make a transfer to a 3rd line, whose trains arrive with uniform probability between $0$ and $10$ minutes after Paul reaches the transfer station. What is the probability that Leo gets to SF before Paul does?
2016 Latvia National Olympiad, 5
The integer sequence $(s_i)$ "having pattern 2016'" is defined as follows:\\
$\circ$ The first member $s_1$ is 2.\\
$\circ$ The second member $s_2$ is the least positive integer exceeding $s_1$ and having digit 0 in its decimal notation.\\
$\circ$ The third member $s_3$ is the least positive integer exceeding $s_2$ and having digit 1 in its decimal notation.\\
$\circ$ The third member $s_3$ is the least positive integer exceeding $s_2$ and having digit 6 in its decimal notation.\\
The following members are defined in the same way. The required digits change periodically: $2 \rightarrow 0 \rightarrow 1 \rightarrow 6 \rightarrow 2 \rightarrow 0 \rightarrow \ldots$. The first members of this sequence are the following: $2; 10; 11; 16; 20; 30; 31; 36; 42; 50$. What are the 4 numbers that immediately follow $s_k = 2016$ in this sequence?
2022 Princeton University Math Competition, 9
In the complex plane, let $z_1, z_2, z_3$ be the roots of the polynomial $p(x) = x^3- ax^2 + bx - ab$. Find the number of integers $n$ between $1$ and $500$ inclusive that are expressible as $z^4_1 +z^4_2 +z^4_3$ for some choice of positive integers $a, b$.
Ukrainian TYM Qualifying - geometry, VIII.3
Find the largest value of the expression $\frac{p}{R}\left( 1- \frac{r}{3R}\right)$ , where $p,R, r$ is, respectively, the perimeter, the radius of the circumscribed circle and the radius of the inscribed circle of a triangle.
2023 Turkey Team Selection Test, 4
Let $k$ be a positive integer and $S$ be a set of sets which have $k$ elements. For every $A,B \in S$ and $A\neq B$ we have $A \Delta B \in S$. Find all values of $k$ when $|S|=1023$ and $|S|=2023$.
Note:$A \Delta B = (A \setminus B) \cup (B \setminus A)$
2014 Purple Comet Problems, 1
In the diagram below $ABCD$ is a square and both $\triangle CFD$ and $\triangle CBE$ are equilateral. Find the degree measure of $\angle CEF$.
[asy]
size(4cm);
pen dps = fontsize(10);
defaultpen(dps);
pair temp = (1,0);
pair B = (0,0);
pair C = rotate(45,B)*temp;
pair D = rotate(270,C)*B;
pair A = rotate(270,D)*C;
pair F = rotate(60 ,D)*C;
pair E = rotate(60 ,C)*B;
label("$B$",B,SW*.5);
label("$C$",C,W*2);
label("$D$",D,NW*.5);
label("$A$",A,W);
label("$F$",F,N*.5);
label("$E$",E,S*.5);
draw(A--B--C--D--cycle^^D--F--C--E--B^^F--E);
[/asy]
1974 AMC 12/AHSME, 3
The coefficient of $x^7$ in the polynomial expansion of
\[ (1+2x-x^2)^4 \]
is
$ \textbf{(A)}\ -8 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ -12 \qquad\textbf{(E)}\ \text{none of these} $
2013 India IMO Training Camp, 3
We define an operation $\oplus$ on the set $\{0, 1\}$ by
\[ 0 \oplus 0 = 0 \,, 0 \oplus 1 = 1 \,, 1 \oplus 0 = 1 \,, 1 \oplus 1 = 0 \,.\]
For two natural numbers $a$ and $b$, which are written in base $2$ as $a = (a_1a_2 \ldots a_k)_2$ and $b = (b_1b_2 \ldots b_k)_2$ (possibly with leading 0's), we define $a \oplus b = c$ where $c$ written in base $2$ is $(c_1c_2 \ldots c_k)_2$ with $c_i = a_i \oplus b_i$, for $1 \le i \le k$. For example, we have $7 \oplus 3 = 4$ since $ 7 = (111)_2$ and $3 = (011)_2$.
For a natural number $n$, let $f(n) = n \oplus \left[ n/2 \right]$, where $\left[ x \right]$ denotes the largest integer less than or equal to $x$. Prove that $f$ is a bijection on the set of natural numbers.
Novosibirsk Oral Geo Oly VII, 2019.3
Equal line segments are marked in triangle $ABC$. Find its angles.
[img]https://cdn.artofproblemsolving.com/attachments/0/2/bcb756bba15ba57013f1b6c4cbe9cc74171543.png[/img]
2017 Iran Team Selection Test, 1
Let $n>1$ be an integer. Prove that there exists an integer $n-1 \ge m \ge \left \lfloor \frac{n}{2} \right \rfloor$ such that the following equation has integer solutions with $a_m>0:$
$$\frac{a_{m}}{m+1}+\frac{a_{m+1}}{m+2}+ \cdots + \frac{a_{n-1}}{n}=\frac{1}{\textrm{lcm}\left ( 1,2, \cdots , n \right )}$$
[i]Proposed by Navid Safaei[/i]
2005 Junior Balkan Team Selection Tests - Moldova, 7
Let $p$ be a prime number and $a$ and $n$ positive nonzero integers. Prove that
if $2^p + 3^p = a^n$ then $n=1$
1963 Polish MO Finals, 3
From a given triangle, cut out the rectangle with the largest area.
2005 Korea National Olympiad, 5
Let $P$ be a point that lies outside of circle $O$. A line passes through $P$ and meets the circle at $A$ and $B$, and another line passes through $P$ and meets the circle at $C$ and $D$. The point $A$ is between $P$ and $B$, $C$ is between $P$ and $D$. Let the intersection of segment $AD$ and $BC$ be $L$ and construct $E$ on ray $(PA$ so that $BL \cdot PE = DL \cdot PD$.
Show that $M$ is the midpoint of the segment $DE$, where $M$ is the intersection of lines $PL$ and $DE$.
2008 AMC 12/AHSME, 16
The numbers $ \log(a^3b^7)$, $ \log(a^5b^{12})$, and $ \log(a^8b^{15})$ are the first three terms of an arithmetic sequence, and the $ 12^\text{th}$ term of the sequence is $ \log{b^n}$. What is $ n$?
$ \textbf{(A)}\ 40 \qquad
\textbf{(B)}\ 56 \qquad
\textbf{(C)}\ 76 \qquad
\textbf{(D)}\ 112 \qquad
\textbf{(E)}\ 143$
1976 Canada National Olympiad, 4
Let $ AB$ be a diameter of a circle, $ C$ be any fixed point between $ A$ and $ B$ on this diameter, and $ Q$ be a variable point on the circumference of the circle. Let $ P$ be the point on the line determined by $ Q$ and $ C$ for which $ \frac{AC}{CB}\equal{}\frac{QC}{CP}$. Describe, with proof, the locus of the point $ P$.
STEMS 2021-22 Math Cat A-B, A2 B4 C1
If there are integers $a,b,c$ such that $a^2+b^2+c^2-ab-bc-ca$ is divisible by a prime $p$ such that $\text{gcd}(p,\frac{a^2+b^2+c^2-ab-bc-ca}{p})=1$, then prove that there are integers $x,y,z$ such that $p=x^2+y^2+z^2-xy-yz-zx$.
2013 APMO, 1
Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$, and let $O$ be the center of its circumcircle. Show that the segments $OA$, $OF$, $OB$, $OD$, $OC$, $OE$ dissect the triangle $ABC$ into three pairs of triangles that have equal areas.
2013 Harvard-MIT Mathematics Tournament, 2
The real numbers $x$, $y$, $z$, satisfy $0\leq x \leq y \leq z \leq 4$. If their squares form an arithmetic progression with common difference $2$, determine the minimum possible value of $|x-y|+|y-z|$.
2008 Iran MO (3rd Round), 4
Let $ x,y,z\in\mathbb R^{\plus{}}$ and $ x\plus{}y\plus{}z\equal{}3$. Prove that:
\[ \frac{x^3}{y^3\plus{}8}\plus{}\frac{y^3}{z^3\plus{}8}\plus{}\frac{z^3}{x^3\plus{}8}\geq\frac19\plus{}\frac2{27}(xy\plus{}xz\plus{}yz)\]
1991 Spain Mathematical Olympiad, 6
Find the integer part of $ \frac{1}{\sqrt1}+\frac{1}{\sqrt2}+\frac{1}{\sqrt3}+...+\frac{1}{\sqrt{1000}} $
1963 Miklós Schweitzer, 1
Show that the perimeter of an arbitrary planar section of a tetrahedron is less than the perimeter of one of the faces of the tetrahedron. [Gy. Hajos]
1954 AMC 12/AHSME, 6
The value of $ \frac{1}{16}a^0\plus{}\left (\frac{1}{16a} \right )^0\minus{} \left (64^{\minus{}\frac{1}{2}} \right )\minus{} (\minus{}32)^{\minus{}\frac{4}{5}}$ is:
$ \textbf{(A)}\ 1 \frac{13}{16} \qquad
\textbf{(B)}\ 1 \frac{3}{16} \qquad
\textbf{(C)}\ 1 \qquad
\textbf{(D)}\ \frac{7}{8} \qquad
\textbf{(E)}\ \frac{1}{16}$