This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2010 National Olympiad First Round, 18

Tags:
Which one does not divide the numbers of $500$-subset of a set with $1000$ elements? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 11 \qquad\textbf{(D)}\ 13 \qquad\textbf{(E)}\ 17 $

2012 IFYM, Sozopol, 6

Tags: algebra
Find all triples $(x,y,z)$ of real numbers satisfying the system of equations $\left\{\begin{matrix} 3(x+\frac{1}{x})=4(y+\frac{1}{y})=5(z+\frac{1}{z}),\\ xy+yz+zx=1.\end{matrix}\right.$

2014 Moldova Team Selection Test, 3

Let $\triangle ABC$ be an acute triangle and $AD$ the bisector of the angle $\angle BAC$ with $D\in(BC)$. Let $E$ and $F$ denote feet of perpendiculars from $D$ to $AB$ and $AC$ respectively. If $BF\cap CE=K$ and $\odot AKE\cap BF=L$ prove that $DL\perp BF$.

2021 STEMS CS Cat A, Q4

Let $a_1,a_2, \dots a_n$ be positive real numbers. Define $b_1,b_2, \dots b_n$ as follows. \begin{align*} b_1&=a_1 \\ b_2&=max(a_1,a_2)\\ b_i&=max(b_{i-1},b_{i-2}+a_i) \text{ for } i=3,4 \dots n \end{align*} Also define $c_1,c_2 \dots c_n$ as follows. \begin{align*} c_n&=a_n \\ c_{n-1}&=max(a_n,a_{n-1})\\ c_i&=max(c_{i+1},c_{i+2}+a_i) \text{ for } i=n-2,n-3 \dots 1 \end{align*} Prove that $b_n=c_1$.\\

2025 CMIMC Geometry, 7

Tags: geometry
Let $ABC$ be a triangle with altitude $\overline{AF}.$ Let $AB=5, AC=8, BC=7.$ Let $P$ be on $\overline{AF}$ such that it lies between $A$ and $F.$ Let $\omega_1, \omega_2$ be the circumcircles of $APB, APC$ respectively. Let $\overline{BC}$ intersect $\omega_1$ at $B' \neq B.$ Also, let $\overline{BC}$ intersect $\omega_2$ at $C' \neq C.$ Let $X \neq A$ be on $\omega_1$ such that $B'X=B'A.$ Let $Y \neq A$ be on $\omega_2$ such that $C'A=C'Y.$ Let $X, Y, A$ all lie on one line $h.$ Find the length of $PA.$

2014 Dutch BxMO/EGMO TST, 3

Tags: geometry
In triangle $ABC$, $I$ is the centre of the incircle. There is a circle tangent to $AI$ at $I$ which passes through $B$. This circle intersects $AB$ once more in $P$ and intersects $BC$ once more in $Q$. The line $QI$ intersects $AC$ in $R$. Prove that $|AR|\cdot |BQ|=|P I|^2$

1997 India Regional Mathematical Olympiad, 1

Tags: ratio , geometry
Let $P$ be an interior point of a triangle $ABC$ and let $BP$ and $CP$ meet $AC$ and $AB$ in $E$ and $F$ respectively. IF $S_{BPF} = 4$,$S_{BPC} = 8$ and $S_{CPE} = 13$, find $S_{AFPE}.$

2018 Baltic Way, 9

Tags: rhombus , geometry
Olga and Sasha play a game on an infinite hexagonal grid. They take turns in placing a stone on a free hexagon of their choice. Olga starts the game. Just before the $2018$th stone is placed, a new rule comes into play. A stone may now be placed only on those free hexagons having at least two occupied neighbors. A player loses when she or he either is unable to make a move, or makes a move such that a pattern of the rhomboid shape as shown (rotated in any possible way) appears. Determine which player, if any, possesses a winning strategy.

1995 AMC 8, 25

Tags:
Buses from Dallas to Houston leave every hour on the hour. Buses from Houston to Dallas leave every hour on the half hour. The trip from one city to the other takes $5$ hours. Assuming the buses travel on the same highway, how many Dallas-bound buses does a Houston-bound bus pass in the highway (not in the station)? $\text{(A)}\ 5 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 11$

2021 Iran Team Selection Test, 3

Prove there exist two relatively prime polynomials $P(x),Q(x)$ having integer coefficients and a real number $u>0$ such that if for positive integers $a,b,c,d$ we have: $$|\frac{a}{c}-1|^{2021} \le \frac{u}{|d||c|^{1010}}$$ $$| (\frac{a}{c})^{2020}-\frac{b}{d}| \le \frac{u}{|d||c|^{1010}}$$ Then we have : $$bP(\frac{a}{c})=dQ(\frac{a}{c})$$ (Two polynomials are relatively prime if they don't have a common root) Proposed by [i]Navid Safaii[/i] and [i]Alireza Haghi[/i]

2019 Iran Team Selection Test, 3

Numbers $m$ and $n$ are given positive integers. There are $mn$ people in a party, standing in the shape of an $m\times n$ grid. Some of these people are police officers and the rest are the guests. Some of the guests may be criminals. The goal is to determine whether there is a criminal between the guests or not.\\ Two people are considered \textit{adjacent} if they have a common side. Any police officer can see their adjacent people and for every one of them, know that they're criminal or not. On the other hand, any criminal will threaten exactly one of their adjacent people (which is likely an officer!) to murder. A threatened officer will be too scared, that they deny the existence of any criminal between their adjacent people.\\ Find the least possible number of officers such that they can take position in the party, in a way that the goal is achievable. (Note that the number of criminals is unknown and it is possible to have zero criminals.) [i]Proposed by Abolfazl Asadi[/i]

2008 China Western Mathematical Olympiad, 1

Four frogs are positioned at four points on a straight line such that the distance between any two neighbouring points is 1 unit length. Suppose the every frog can jump to its corresponding point of reflection, by taking any one of the other 3 frogs as the reference point. Prove that, there is no such case that the distance between any two neighbouring points, where the frogs stay, are all equal to 2008 unit length.

2012 Kosovo National Mathematical Olympiad, 1

Find the two last digits of $2012^{2012}$.

2017 Ecuador NMO (OMEC), 2

Let $ABC$ be a triangle with $AC = 18$ and $D$ is the point on the segment $AC$ such that $AD = 5$. Draw perpendiculars from $D$ on $AB$ and $BC$ which have lengths $4$ and $5$ respectively. Find the area of the triangle $ABC$.

1954 Poland - Second Round, 1

Tags: geometry , circles
The cross-section of a ball bearing consists of two concentric circles $ C $ and $ C_1 $, between which there are $ n $ small circles $ k_1, k_2, \ldots, k_n $, each of which is tangent to the two adjacent circles and to both circles $ C $ and $ C_1 $. Given the radius $ r $ of the inner circle $ C $ and a natural number $ n $, calculate the radius $ x $ of circle $ C_2 $ passing through the points of tangency of circles $ k_1, k_2, \ldots, k_n $ and the sum $ s $ of the lengths of the arcs of circles $ k_1, k_2, \ldots, k_n $ that lie outside circle $ C_2 $.

2013 USA TSTST, 3

Divide the plane into an infinite square grid by drawing all the lines $x=m$ and $y=n$ for $m,n \in \mathbb Z$. Next, if a square's upper-right corner has both coordinates even, color it black; otherwise, color it white (in this way, exactly $1/4$ of the squares are black and no two black squares are adjacent). Let $r$ and $s$ be odd integers, and let $(x,y)$ be a point in the interior of any white square such that $rx-sy$ is irrational. Shoot a laser out of this point with slope $r/s$; lasers pass through white squares and reflect off black squares. Prove that the path of this laser will form a closed loop.

1991 Spain Mathematical Olympiad, 2

Given two distinct elements $a,b \in \{-1,0,1\}$, consider the matrix $A$ . Find a subset $S$ of the set of the rows of $A$, of minimum size, such that every other row of $A$ is a linear combination of the rows in $S$ with integer coefficients.

2013 NZMOC Camp Selection Problems, 2

Find all primes that can be written both as a sum and as a difference of two primes (note that $ 1$ is not a prime).

1976 IMO, 3

A box whose shape is a parallelepiped can be completely filled with cubes of side $1.$ If we put in it the maximum possible number of cubes, each of volume $2$, with the sides parallel to those of the box, then exactly $40$ percent of the volume of the box is occupied. Determine the possible dimensions of the box.

1990 IMO Shortlist, 9

The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$

1995 Belarus Team Selection Test, 2

Circles $S,S_1,S_2$ are given in a plane. $S_1$ and $S_2$ touch each other externally, and both touch $S$ internally at $A_1$ and $A_2$ respectively. The common internal tangent to $S_1$ and $S_2$ meets $S$ at $P$ and $Q.$ Let $B_1$ and $B_2$ be the intersections of $PA_1$ and $PA_2$ with $S_1$ and $S_2$, respectively. Prove that $B_1B_2$ is a common tangent to $S_1,S_2$

2017 Iran Team Selection Test, 2

In the country of [i]Sugarland[/i], there are $13$ students in the IMO team selection camp. $6$ team selection tests were taken and the results have came out. Assume that no students have the same score on the same test.To select the IMO team, the national committee of math Olympiad have decided to choose a permutation of these $6$ tests and starting from the first test, the person with the highest score between the remaining students will become a member of the team.The committee is having a session to choose the permutation. Is it possible that all $13$ students have a chance of being a team member? [i]Proposed by Morteza Saghafian[/i]

2012 Korea Junior Math Olympiad, 2

A pentagon $ABCDE$ is inscribed in a circle $O$, and satis fies $\angle A = 90^o, AB = CD$. Let $F$ be a point on segment $AE$. Let $BF$ hit $O$ again at $J(\ne B)$, $CE \cap DJ = K$, $BD\cap FK = L$. Prove that $B,L,E,F$ are cyclic.

2005 Poland - Second Round, 2

A rhombus $ABCD$ with $\angle BAD=60^{\circ}$ is given. Points $E$ on side $AB$ and $F$ on side $AD$ are such that $\angle ECF=\angle ABD$. Lines $CE$ and $CF$ respectively meet line $BD$ at $P$ and $Q$. Prove that $\frac{PQ}{EF}=\frac{AB}{BD}$.

1964 Polish MO Finals, 5

Given an acute angle and a circle inside the angle. Find a point $ M $ on the circle such that the sum of the distances of the point $ M $ from the sides of the angle is a minimum.