Found problems: 85335
2013 National Chemistry Olympiad, 54
How many sigma $(\sigma)$ and pi $(\pi)$ bonds are in a molecule of ethyne (acetylene), $\ce{HCCH}?$
$ \textbf{(A) } 1 \sigma \text{ and } 1 \pi \qquad\textbf{(B) }2 \sigma \text{ and } 1 \pi \qquad\textbf{(C) }2 \sigma \text{ and } 3\pi \qquad\textbf{(D) }3 \sigma \text{ and } 2 \pi\qquad$
1985 IMO Longlists, 92
Find a method by which one can compute the coefficients of $P(x) = x^6 + a_1x^5 + \cdots+ a_6$ from the roots of $P(x) = 0$ by performing not more than $15$ additions and $15$ multiplications.
2016 LMT, Team Round
[b]p1.[/b] Let $X,Y ,Z$ be nonzero real numbers such that the quadratic function $X t^2 - Y t + Z = 0$ has the unique root $t = Y$ . Find $X$.
[b]p2.[/b] Let $ABCD$ be a kite with $AB = BC = 1$ and $CD = AD =\sqrt2$. Given that $BD =\sqrt5$, find $AC$.
[b]p3.[/b] Find the number of integers $n$ such that $n -2016$ divides $n^2 -2016$. An integer $a$ divides an integer $b$ if there exists a unique integer $k$ such that $ak = b$.
[b]p4.[/b] The points $A(-16, 256)$ and $B(20, 400)$ lie on the parabola $y = x^2$ . There exists a point $C(a,a^2)$ on the parabola $y = x^2$ such that there exists a point $D$ on the parabola $y = -x^2$ so that $ACBD$ is a parallelogram. Find $a$.
[b]p5.[/b] Figure $F_0$ is a unit square. To create figure $F_1$, divide each side of the square into equal fifths and add two new squares with sidelength $\frac15$ to each side, with one of their sides on one of the sides of the larger square. To create figure $F_{k+1}$ from $F_k$ , repeat this same process for each open side of the smallest squares created in $F_n$. Let $A_n$ be the area of $F_n$. Find $\lim_{n\to \infty} A_n$.
[img]https://cdn.artofproblemsolving.com/attachments/8/9/85b764acba2a548ecc61e9ffc29aacf24b4647.png[/img]
[b]p6.[/b] For a prime $p$, let $S_p$ be the set of nonnegative integers $n$ less than $p$ for which there exists a nonnegative integer $k$ such that $2016^k -n$ is divisible by $p$. Find the sum of all $p$ for which $p$ does not divide the sum of the elements of $S_p$ .
[b]p7. [/b] Trapezoid $ABCD$ has $AB \parallel CD$ and $AD = AB = BC$. Unit circles $\gamma$ and $\omega$ are inscribed in the trapezoid such that circle $\gamma$ is tangent to $CD$, $AB$, and $AD$, and circle $\omega$ is tangent to $CD$, $AB$, and $BC$. If circles $\gamma$ and $\omega$ are externally tangent to each other, find $AB$.
[b]p8.[/b] Let $x, y, z$ be real numbers such that $(x+y)^2+(y+z)^2+(z+x)^2 = 1$. Over all triples $(x, y, z)$, find the maximum possible value of $y -z$.
[b]p9.[/b] Triangle $\vartriangle ABC$ has sidelengths $AB = 13$, $BC = 14$, and $CA = 15$. Let $P$ be a point on segment $BC$ such that $\frac{BP}{CP} = 3$, and let $I_1$ and $I_2$ be the incenters of triangles $\vartriangle ABP$ and $\vartriangle ACP$. Suppose that the circumcircle of $\vartriangle I_1PI_2$ intersects segment $AP$ for a second time at a point $X \ne P$. Find the length of segment $AX$.
[b]p10.[/b] For $1 \le i \le 9$, let Ai be the answer to problem i from this section. Let $(i_1,i_2,... ,i_9)$ be a permutation of $(1, 2,... , 9)$ such that $A_{i_1} < A_{i_2} < ... < A_{i_9}$. For each $i_j$ , put the number $i_j$ in the box which is in the $j$th row from the top and the $j$th column from the left of the $9\times 9$ grid in the bonus section of the answer sheet. Then, fill in the rest
of the squares with digits $1, 2,... , 9$ such that
$\bullet$ each bolded $ 3\times 3$ grid contains exactly one of each digit from $ 1$ to $9$,
$\bullet$ each row of the $9\times 9$ grid contains exactly one of each digit from $ 1$ to $9$, and
$\bullet$ each column of the $9\times 9$ grid contains exactly one of each digit from $ 1$ to $9$.
PS. You had better use hide for answers.
2011 All-Russian Olympiad, 3
Let $ABC$ be an equilateral triangle. A point $T$ is chosen on $AC$ and on arcs $AB$ and $BC$ of the circumcircle of $ABC$, $M$ and $N$ are chosen respectively, so that $MT$ is parallel to $BC$ and $NT$ is parallel to $AB$. Segments $AN$ and $MT$ intersect at point $X$, while $CM$ and $NT$ intersect in point $Y$. Prove that the perimeters of the polygons $AXYC$ and $XMBNY$ are the same.
2009 Costa Rica - Final Round, 1
Let $ x$ and $ y$ positive real numbers such that $ (1\plus{}x)(1\plus{}y)\equal{}2$. Show that $ xy\plus{}\frac{1}{xy}\geq\ 6$
2006 Federal Competition For Advanced Students, Part 1, 4
Given is the function $ f\equal{} \lfloor x^2 \rfloor \plus{} \{ x \}$ for all positive reals $ x$. ( $ \lfloor x \rfloor$ denotes the largest integer less than or equal $ x$ and $ \{ x \} \equal{} x \minus{} \lfloor x \rfloor$.)
Show that there exists an arithmetic sequence of different positive rational numbers, which all have the denominator $ 3$, if they are a reduced fraction, and don’t lie in the range of the function $ f$.
2024 AMC 12/AHSME, 21
Suppose that $a_1 = 2$ and the sequence $(a_n)$ satisfies the recurrence relation \[\frac{a_n -1}{n-1}=\frac{a_{n-1}+1}{(n-1)+1}\] for all $n \ge 2.$ What is the greatest integer less than or equal to \[\sum^{100}_{n=1} a_n^2?\]
$\textbf{(A) } 338{,}550 \qquad \textbf{(B) } 338{,}551 \qquad \textbf{(C) } 338{,}552 \qquad \textbf{(D) } 338{,}553 \qquad \textbf{(E) } 338{,}554$
2009 IMC, 5
Let $\mathbb{M}$ be the vector space of $m \times p$ real matrices. For a vector subspace $S\subseteq \mathbb{M}$, denote by $\delta(S)$ the dimension of the vector space generated by all columns of all matrices in $S$.
Say that a vector subspace $T\subseteq \mathbb{M}$ is a $\emph{covering matrix space}$ if
\[ \bigcup_{A\in T, A\ne \mathbf{0}} \ker A =\mathbb{R}^p \]
Such a $T$ is minimal if it doesn't contain a proper vector subspace $S\subset T$ such that $S$ is also a covering matrix space.
[list]
(a) (8 points) Let $T$ be a minimal covering matrix space and let $n=\dim (T)$
Prove that
\[ \delta(T)\le \dbinom{n}{2} \]
(b) (2 points) Prove that for every integer $n$ we can find $m$ and $p$, and a minimal covering matrix space $T$ as above such that $\dim T=n$ and $\delta(T)=\dbinom{n}{2}$[/list]
2018 Benelux, 4
An integer $n\geq 2$ having exactly $s$ positive divisors $1=d_1<d_2<\cdots<d_s=n$ is said to be [i]good[/i] if there exists an integer $k$, with $2\leq k\leq s$, such that $d_k>1+d_1+\cdots+d_{k-1}$. An integer $n\geq 2$ is said to be [i]bad[/i] if it is not good.
(a) Show that there are infinitely many bad integers.
(b) Prove that, among any seven consecutive integers all greater than $2$, there are always at least four good integers.
(c) Show that there are infinitely many sequences of seven consecutive good integers.
2024 Indonesia TST, 3
Let $n\geqslant 2$ be a positive integer. Paul has a $1\times n^2$ rectangular strip consisting of $n^2$ unit squares, where the $i^{\text{th}}$ square is labelled with $i$ for all $1\leqslant i\leqslant n^2$. He wishes to cut the strip into several pieces, where each piece consists of a number of consecutive unit squares, and then [i]translate[/i] (without rotating or flipping) the pieces to obtain an $n\times n$ square satisfying the following property: if the unit square in the $i^{\text{th}}$ row and $j^{\text{th}}$ column is labelled with $a_{ij}$, then $a_{ij}-(i+j-1)$ is divisible by $n$.
Determine the smallest number of pieces Paul needs to make in order to accomplish this.
1975 Czech and Slovak Olympiad III A, 3
Determine all real tuples $\left(x_1,x_2,x_3,x_4,x_5,x_6\right)$ such that
\begin{align*}
x_1(x_6 + x_2) &= x_3 + x_5, \\
x_2(x_1 + x_3) &= x_4 + x_6, \\
x_3(x_2 + x_4) &= x_5 + x_1, \\
x_4(x_3 + x_5) &= x_6 + x_2, \\
x_5(x_4 + x_6) &= x_1 + x_3, \\
x_6(x_5 + x_1) &= x_2 + x_4.
\end{align*}
2009 Vietnam Team Selection Test, 2
Let a polynomial $ P(x) \equal{} rx^3 \plus{} qx^2 \plus{} px \plus{} 1$ $ (r > 0)$ such that the equation $ P(x) \equal{} 0$ has only one real root. A sequence $ (a_n)$ is defined by $ a_0 \equal{} 1, a_1 \equal{} \minus{} p, a_2 \equal{} p^2 \minus{} q, a_{n \plus{} 3} \equal{} \minus{} pa_{n \plus{} 2} \minus{} qa_{n \plus{} 1} \minus{} ra_n$.
Prove that $ (a_n)$ contains an infinite number of nagetive real numbers.
2005 Today's Calculation Of Integral, 31
Evaluate
\[\lim_{n\to\infty} \int_0^{\pi} x^2 |\sin nx| dx\]
2022 Stanford Mathematics Tournament, 4
Let $ABC$ be a triangle with $\angle A=\tfrac{135}{2}^\circ$ and $\overline{BC}=15$. Square $WXYZ$ is drawn inside $ABC$ such that $W$ is on $AB$, $X$ is on $AC$, $Z$ is on $BC$, and triangle $ZBW$ is similar to triangle $ABC$, but $WZ$ is not parallel to $AC$. Over all possible triangles $ABC$, find the maximum area of $WXYZ$.
1940 Putnam, A8
A triangle is bounded by the lines $a_1 x+ b_1 y +c_1=0$, $a_2 x+ b_2 y +c_2=0$ and $a_2 x+ b_2 y +c_2=0$.
Show that its area, disregarding sign, is
$$\frac{\Delta^{2}}{2(a_2 b_3- a_3 b_2)(a_3 b_1- a_1 b_3)(a_1 b_2- a_2 b_1)},$$
where $\Delta$ is the discriminant of the matrix
$$M=\begin{pmatrix}
a_1 & b_1 &c_1\\
a_2 & b_2 &c_2\\
a_3 & b_3 &c_3
\end{pmatrix}.$$
2017 ASDAN Math Tournament, 17
For $\triangle ABC$, $AB=BC=5$, and $AC=6$. Circle $O$ is inscribed in $\triangle ABC$, and circle $P$ is tangent to circle $O$, $AB$, and $AC$. Compute the area of $\triangle ABC$ not covered by circles $O$ and $P$.
2015 AMC 10, 12
Points $(\sqrt{\pi}, a)$ and $(\sqrt{\pi}, b)$ are distinct points on the graph of $y^2+x^4=2x^2y+1$. What is $|a-b|$?
$ \textbf{(A) }1\qquad\textbf{(B) }\dfrac{\pi}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{1+\pi}\qquad\textbf{(E) }1+\sqrt{\pi} $
2018 Iranian Geometry Olympiad, 2
In convex quadrilateral $ABCD$, the diagonals $AC$ and $BD$ meet at the point $P$. We know that $\angle DAC = 90^o$ and $2 \angle ADB = \angle ACB$. If we have $ \angle DBC + 2 \angle ADC = 180^o$ prove that $2AP = BP$.
Proposed by Iman Maghsoudi
1971 AMC 12/AHSME, 20
The sum of the squares of the roots of the equation $x^2+2hx=3$ is $10$. The absolute value of $h$ is equal to
$\textbf{(A) }-1\qquad\textbf{(B) }\textstyle\frac{1}{2}\qquad\textbf{(C) }\textstyle\frac{3}{2}\qquad\textbf{(D) }2\qquad \textbf{(E) }\text{None of these}$
1991 Bundeswettbewerb Mathematik, 3
In a plane with a square grid, where the side length of the base square is $1$, lies a right triangle. All its vertices are lattice points and all side lengths are integer. Prove that the center of the incircle is also a lattice point.
2019 Peru IMO TST, 1
In each cell of a chessboard with $2$ rows and $2019$ columns a real number is written so that:
[LIST]
[*] There are no two numbers written in the first row that are equal to each other.[/*]
[*] The numbers written in the second row coincide with (in some another order) the numbers written in the first row.[/*]
[*] The two numbers written in each column are different and they add up to a rational number.[/*]
[/LIST]
Determine the maximum quantity of irrational numbers that can be in the chessboard.
2014 AMC 10, 20
For how many integers is the number $x^4-51x^2+50$ negative?
$ \textbf{(A) }8\qquad\textbf{(B) }10\qquad\textbf{(C) }12\qquad\textbf{(D) }14\qquad\textbf{(E) }16\qquad $
1986 Kurschak Competition, 1
Any two members of a club with $3n+1$ people plays ping-pong, tennis or chess with each other. Everyone has exactly $n$ partners who plays ping-pong, $n$ who play tennis and $n$ who play chess.
Prove that we can choose three members of the club who play three different games amongst each other.
2008 Rioplatense Mathematical Olympiad, Level 3, 2
On a line, there are $n$ closed intervals (none of which is a single point) whose union we denote by $S$. It's known that for every real number $d$, $0<d\le 1$, there are two points in $S$ that are a distance $d$ from each other.
[list](a) Show that the sum of the lengths of the $n$ closed intervals is larger than $\frac{1}{n}$.
(b) Prove that, for each positive integer $n$, the $\frac{1}{n}$ in the statement of part (a) cannot be replaced with a larger number.[/list]
2014 Bulgaria JBMO TST, 8
Find the smallest positive integer $n,$ such that $3^k+n^k+ (3n)^k+ 2014^k$ is a perfect square for all natural numbers $k,$ but not a perfect cube, for all natural numbers $k.$