Found problems: 85335
1972 IMO, 1
Find all positive real solutions to: \begin{eqnarray*} (x_1^2-x_3x_5)(x_2^2-x_3x_5) &\le& 0 \\ (x_2^2-x_4x_1)(x_3^2-x_4x_1) &\le& 0 \\ (x_3^2-x_5x_2)(x_4^2-x_5x_2) &\le& 0 \\ (x_4^2-x_1x_3)(x_5^2-x_1x_3) &\le & 0 \\ (x_5^2-x_2x_4)(x_1^2-x_2x_4) &\le& 0 \\ \end{eqnarray*}
1989 AMC 12/AHSME, 11
Hi guys,
I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this:
1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though.
2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary.
3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions:
A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh?
B. Do NOT go back to the previous problem(s). This causes too much confusion.
C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for.
4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving!
Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D
Kvant 2021, M2654
On the side $BC$ of the parallelogram $ABCD$, points $E$ and $F$ are given ($E$ lies between $B$ and $F$) and the diagonals $AC, BD$ meet at $O$. If it's known that $AE, DF$ are tangent to the circumcircle of $\triangle AOD$, prove that they're tangent to the circumcircle of $\triangle EOF$ as well.
Kvant 2021, M2635
In the triangle $ABC$, the lengths of the sides $BC, CA$ and $AB$ are $a,b$ and $c{}$ respectively. Several segments are drawn from the vertex $C{}$, which cut the triangle $ABC$ into several triangles. Find the smallest number $M{}$ for which, with each such cut, the sum of the radii of the circles inscribed in triangles does not exceed $M{}$.
[i]Porposed by O. Titov[/i]
2023 Princeton University Math Competition, 9
9. The real quartic $P x^{4}+U x^{3}+M x^{2}+A x+C$ has four different positive real roots. Find the square of the smallest real number $z$ for which the expression $M^{2}-2 U A+z P C$ is always positive, regardless of what the roots of the quartic are.
1981 Putnam, A4
A point $P$ moves inside a unit square in a straight line at unit speed. When it meets a corner it escapes. When it
meets an edge its line of motion is reflected so that the angle of incidence equals the angle of reflection.
Let $N( t)$ be the number of starting directions from a fixed interior point $P_0$ for which $P$ escapes within $t$ units of time. Find the least constant $a$ for which constants $b$ and $c$ exist such that
$$N(t) \leq at^2 +bt+c$$
for all $t>0$ and all initial points $P_0 .$
2004 Harvard-MIT Mathematics Tournament, 3
Find \[ \lim_{x \to \infty} \left( \sqrt[3]{x^3 + x^2}-\sqrt[3]{x^3-x^2} \right). \]
1992 China Team Selection Test, 2
Let $n \geq 2, n \in \mathbb{N},$ find the least positive real number $\lambda$ such that for arbitrary $a_i \in \mathbb{R}$ with $i = 1, 2, \ldots, n$ and $b_i \in \left[0, \frac{1}{2}\right]$ with $i = 1, 2, \ldots, n$, the following holds:
\[\sum^n_{i=1} a_i = \sum^n_{i=1} b_i = 1 \Rightarrow \prod^n_{i=1} a_i \leq \lambda \sum^n_{i=1} a_i b_i.\]
2009 Ukraine National Mathematical Olympiad, 4
In the triangle $ABC$ given that $\angle ABC = 120^\circ .$ The bisector of $\angle B$ meet $AC$ at $M$ and external bisector of $\angle BCA$ meet $AB$ at $P.$ Segments $MP$ and $BC$ intersects at $K$. Prove that $\angle AKM = \angle KPC .$
1995 AMC 8, 7
At Clover View Junior High, one half of the students go home on the school bus. One fourth go home by automobile. One tenth go home on their bicycles. The rest walk home. What fractional part of the students walk home?
$\text{(A)}\ \dfrac{1}{16} \qquad \text{(B)}\ \dfrac{3}{20} \qquad \text{(C)}\ \dfrac{1}{3} \qquad \text{(D)}\ \dfrac{17}{20} \qquad \text{(E)}\ \dfrac{9}{10}$
2021 Math Prize for Girls Problems, 14
Let $S$ be the set of monic polynomials in $x$ of degree 6 all of whose roots are members of the set $\{ -1, 0, 1\}$. Let $P$ be the sum of the polynomials in $S$. What is the coefficient of $x^4$ in $P(x)$?
2008 Brazil National Olympiad, 2
Let $ S$ be a set of $ 6n$ points in a line. Choose randomly $ 4n$ of these points and paint them blue; the other $ 2n$ points are painted green. Prove that there exists a line segment that contains exactly $ 3n$ points from $ S$, $ 2n$ of them blue and $ n$ of them green.
2005 China Team Selection Test, 3
Let $n$ be a positive integer, set $S_n = \{ (a_1,a_2,\cdots,a_{2^n}) \mid a_i=0 \ \text{or} \ 1, 1 \leq i \leq 2^n\}$. For any two elements $a=(a_1,a_2,\cdots,a_{2^n})$ and $b=(b_1,b_2,\cdots,b_{2^n})$ of $S_n$, define
\[ d(a,b)= \sum_{i=1}^{2^n} |a_i - b_i| \]
We call $A \subseteq S_n$ a $\textsl{Good Subset}$ if $d(a,b) \geq 2^{n-1}$ holds for any two distinct elements $a$ and $b$ of $A$. How many elements can the $\textsl{Good Subset}$ of $S_n$ at most have?
2000 Vietnam National Olympiad, 3
Consider the polynomial $ P(x) \equal{} x^3 \plus{} 153x^2 \minus{} 111x \plus{} 38$.
(a) Prove that there are at least nine integers $ a$ in the interval $ [1, 3^{2000}]$ for which $ P(a)$ is divisible by $ 3^{2000}$.
(b) Find the number of integers $ a$ in $ [1, 3^{2000}]$ with the property from (a).
2010 AMC 10, 6
A circle is centered at $ O$, $ \overline{AB}$ is a diameter and $ C$ is a point on the circle with $ \angle COB \equal{} 50^{\circ}$. What is the degree measure of $ \angle CAB$?
$ \textbf{(A)}\ 20 \qquad\textbf{(B)}\ 25 \qquad\textbf{(C)}\ 45 \qquad\textbf{(D)}\ 50 \qquad\textbf{(E)}\ 65$
2006 India National Olympiad, 4
Some 46 squares are randomly chosen from a $9 \times 9$ chess board and colored in [color=red]red[/color]. Show that there exists a $2\times 2$ block of 4 squares of which at least three are colored in [color=red]red[/color].
2016 Thailand Mathematical Olympiad, 5
given $p_1,p_2,...$ be a sequence of integer and $p_1=2$,
for positive integer $n$, $p_{n+1}$ is the least prime factor of $np_1^{1!}p_2^{2!}...p_n^{n!}+1 $
prove that all primes appear in the sequence
(Proposed by Beatmania)
MIPT student olimpiad spring 2022, 1
Sequence of uniformly continuous functions $f_n:R \to R$ uniformly
converges to a function $f:R\to R$. Can we say that $f$ is uniformly continuous?
1991 IMTS, 5
Two people, $A$ and $B$, play the following game with a deck of 32 cards. With $A$ starting, and thereafter the players alternating, each player takes either 1 card or a prime number of cards. Eventually all of the cards are chosen, and the person who has none to pick up is the loser. Who will win the game if they both follow optimal strategy?
LMT Accuracy Rounds, 2023 S8
Ephramis taking his final exams. He has $7$ exams and his school holds finals over $3$ days. For a certain arrangement of finals, let $f$ be the maximum number of finals Ephram takes on any given day. Find the expected value of $f$ .
1971 Bundeswettbewerb Mathematik, 2
You are given a piece of paper. You can cut the paper into $8$ or $12$ pieces. Then you can do so for any of the new pieces or let them uncut and so on.
Can you get exactly $60$ pieces¿ Show that you can get every number of pieces greater than $60$.
2021 Saudi Arabia Training Tests, 6
Let $A$ be a point lies outside circle $(O)$ and tangent lines $AB$, $AC$ of $(O)$. Consider points $D, E, M$ on $(O)$ such that $MD = ME$. The line $DE$ cuts $MB$, $MC$ at $R, S$. Take $X \in OB$, $Y \in OC$ such that $RX, SY \perp DE$. Prove that $XY \perp AM$.
2010 Irish Math Olympiad, 2
For each odd integer $p\ge 3$ find the number of real roots of the polynomial $$f_p(x)=(x-1)(x-2)\cdots (x-p+1)+1.$$
2025 Ukraine National Mathematical Olympiad, 8.6
Given $2025$ positive integer numbers such that the least common multiple (LCM) of all these numbers is not a perfect square. Mykhailo consecutively hides one of these numbers and writes down the LCM of the remaining $2024$ numbers that are not hidden. What is the maximum number of the $2025$ written numbers that can be perfect squares?
[i]Proposed by Oleksii Masalitin[/i]
1970 Czech and Slovak Olympiad III A, 5
Let a real number $k$ and points $S,A,SA=1$ in plane be given. Denote $A'$ the image of $A$ under rotation by an oriented angle $\varphi$ with respect to center $S$. Similarly, let $A''$ be the image of $A'$ under homothety with the factor $\frac{1}{\cos\varphi-k\sin\varphi}$ with respect to center $S.$ Denote the locus \[\ell=\bigl\{A''\mid\varphi\in(-\pi,\pi],\cos\varphi-k\sin\varphi\neq0\bigr\}.\] Show that $\ell$ is a line containing $A.$