Found problems: 85335
LMT Speed Rounds, 10
A square has vertices $(0,10)$, $(0, 0)$, $(10, 0)$, and $(10,10)$ on the $x-y$ coordinate plane. A second quadrilateral is constructed with vertices $(0,10)$, $(0, 0)$, $(10, 0)$, and $(15,15)$. Find the positive difference between the areas of the original square and the second quadrilateral.
[i]Proposed byWilliam Hua[/i]
2015 ASDAN Math Tournament, 2
Compute
$$\sum_{n=0}^\infty\frac{n+1}{2^n}.$$
2018 Taiwan TST Round 3, 2
Given a connected graph with $n$ edges, where there are no parallel edges. For any two cycles $C,C'$ in the graph, define its [i]outer cycle[/i] to be
\[C*C'=\{x|x\in (C-C')\cup (C'-C)\}.\]
(1) Let $r$ be the largest postive integer so that we can choose $r$ cycles $C_1,C_2,\ldots,C_r$ and for all $1\leq k\leq r$ and $1\leq i$, $j_1,j_2,\ldots,j_k\leq r$, we have
\[C_i\neq C_{j_1}*C_{j_2}*\cdots*C_{j_k}.\]
(Remark: There should have been an extra condition that either $j_1\neq i$ or $k\neq 1$)
(2) Let $s$ be the largest positive integer so that we can choose $s$ edges that do not form a cycle.
(Remark: A more precise way of saying this is that any nonempty subset of these $s$ edges does not form a cycle)
Show that $r+s=n$.
Note: A cycle is a set of edges of the form $\{A_iA_{i+1},1\leq i\leq n\}$ where $n\geq 3$, $A_1,A_2,\ldots,A_n$ are distinct vertices, and $A_{n+1}=A_1$.
2017 Sharygin Geometry Olympiad, P13
Two circles pass through points $A$ and $B$. A third circle touches both these circles and meets $AB$ at points $C$ and $D$. Prove that the tangents to this circle at these points are parallel to the common tangents of two given circles.
[i]Proposed by A.Zaslavsky[/i]
1995 Putnam, 5
Let $x_1,x_2,\cdots, x_n$ be real valued differentiable functions of a variable $t$ which satisfy
\begin{align*}
& \frac{\mathrm{d}x_1}{\mathrm{d}t}=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n\\
& \frac{\mathrm{d}x_2}{\mathrm{d}t}=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n\\
& \;\qquad \vdots \\
& \frac{\mathrm{d}x_n}{\mathrm{d}t}=a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n\\
\end{align*}
For some constants $a_{ij}>0$. Suppose that $\lim_{t \to \infty}x_i(t)=0$ for all $1\le i \le n$. Are the functions $x_i$ necessarily linearly dependent?
2007 Stars of Mathematics, 4
Show that any subset of $ A=\{ 1,2,...,2007\} $ having $ 27 $ elements contains three distinct numbers such that the greatest common divisor of two of them divides the other one.
[i]Dan Schwarz[/i]
2009 Argentina National Olympiad, 6
A sequence $a_0,a_1,a_2,...,a_n,...$ is such that $a_0=1$ and, for each $n\ge 0$ , $a_{n+1}=m \cdot a_n$ , where $m$ is an integer between $2$ and $9$ inclusive. Also, every integer between $2$ and $9$ has even been used at least once to get $a_{n+1} $ from $a_n$ . Let $Sn$ the sum of the digits of $a_n$ , $n=0,1,2,...$ . Prove that $S_n \ge S_{n+1}$ for infinite values of $n$.
2004 AMC 10, 24
In $ \triangle ABC$ we have $ AB \equal{} 7$, $ AC \equal{} 8$, and $ BC \equal{} 9$. Point $ D$ is on the circumscribed circle of the triangle so that $ \overline{AD}$ bisects $ \angle BAC$. What is the value of $ AD/CD$?
$ \textbf{(A)}\ \frac{9}{8}\qquad
\textbf{(B)}\ \frac{5}{3}\qquad
\textbf{(C)}\ 2\qquad
\textbf{(D)}\ \frac{17}{7}\qquad
\textbf{(E)}\ \frac{5}{2}$
2009 USAMTS Problems, 5
Let $ABC$ be a triangle with $AB = 3, AC = 4,$ and $BC = 5$, let $P$ be a point on $BC$, and let $Q$ be the point (other than $A$) where the line through $A$ and $P$ intersects the circumcircle of $ABC$. Prove that
\[PQ\le \frac{25}{4\sqrt{6}}.\]
2017 Turkey MO (2nd round), 2
Let $ABCD$ be a quadrilateral such that line $AB$ intersects $CD$ at $X$. Denote circles with inradius $r_1$ and centers $A, B$ as $w_a$ and $w_b$ with inradius $r_2$ and centers $C, D$ as $w_c$ and $w_d$. $w_a$ intersects $w_d$ at $P, Q$. $w_b$ intersects $w_c$ at $R, S$. Prove that if $XA.XB+r_2^2=XC.XD+r_1^2$, then $P,Q,R,S$ are cyclic.
1986 Austrian-Polish Competition, 8
Pairwise distinct real numbers are arranged into an $m \times n$ rectangular array. In each row the entries are arranged increasingly from left to right. Each column is then rearranged in decreasing order from top to bottom. Prove that in the reorganized array, the rows remain arranged increasingly.
2022 Iran Team Selection Test, 11
Consider a table with $n$ rows and $2n$ columns. we put some blocks in some of the cells. After putting blocks in the table we put a robot on a cell and it starts moving in one of the directions right, left, down or up. It can change the direction only when it reaches a block or border. Find the smallest number $m$ such that we can put $m$ blocks on the table and choose a starting point for the robot so it can visit all of the unblocked cells. (the robot can't enter the blocked cells.)
Proposed by Seyed Mohammad Seyedjavadi and Alireza Tavakoli
2015 Iberoamerican Math Olympiad, 4
Let $ABC$ be an acute triangle and let $D$ be the foot of the perpendicular from $A$ to side $BC$. Let $P$ be a point on segment $AD$. Lines $BP$ and $CP$ intersect sides $AC$ and $AB$ at $E$ and $F$, respectively. Let $J$ and $K$ be the feet of the peroendiculars from $E$ and $F$ to $AD$, respectively. Show that
$\frac{FK}{KD}=\frac{EJ}{JD}$.
Swiss NMO - geometry, 2020.2
Let $ABC$ be an acute triangle. Let $M_A, M_B$ and $M_C$ be the midpoints of sides $BC,CA$, respectively $AB$. Let $M'_A , M'_B$ and $M'_C$ be the the midpoints of the arcs $BC, CA$ and $AB$ respectively of the circumscriberd circle of triangle $ABC$. Let $P_A$ be the intersection of the straight line $M_BM_C$ and the perpendicular to $M'_BM'_C$ through $A$. Define $P_B$ and $P_C$ similarly. Show that the straight line $M_AP_A, M_BP_B$ and $M_CP_C$ intersect at one point.
2015 Swedish Mathematical Competition, 4
Solve the system of equations $$
\left\{\begin{array}{l}
x \log x+y \log y+z \log x=0\\ \\
\dfrac{\log x}{x}+\dfrac{\log y}{y}+\dfrac{\log z}{z}=0
\end{array} \right.
$$
2020 SAFEST Olympiad, 3
Let $\mathcal L$ be the set of all lines in the plane and let $f$ be a function that assigns to each line $\ell\in\mathcal L$ a point $f(\ell)$ on $\ell$. Suppose that for any point $X$, and for any three lines $\ell_1,\ell_2,\ell_3$ passing through $X$, the points $f(\ell_1),f(\ell_2),f(\ell_3)$, and $X$ lie on a circle.
Prove that there is a unique point $P$ such that $f(\ell)=P$ for any line $\ell$ passing through $P$.
[i]Australia[/i]
2007 IMS, 4
Prove that: \[\det(A)=\frac{1}{n!}\left| \begin{array}{llllll}\mbox{tr}(A) & 1 & 0 & \ldots & \ldots & 0 \\ \mbox{tr}(A^{2}) & \mbox{tr}(A) & 2 & 0 & \ldots & 0 \\ \mbox{tr}(A^{3}) & \mbox{tr}(A^{2}) & \mbox{tr}(A) & 3 & & \vdots \\ \vdots & & & & & n-1 \\ \mbox{tr}(A^{n}) & \mbox{tr}(A^{n-1}) & \mbox{tr}(A^{n-2}) & \ldots & \ldots & \mbox{tr}(A) \end{array}\right|\]
2017 Regional Olympiad of Mexico Northeast, 4
Let $\Gamma$ be the circumcircle of the triangle $ABC$ and let $M$ be the midpoint of the arc $\Gamma$ containing $A$ and bounded by $B$ and $C$. Let $P$ and $Q$ be points on the segments $AB$ and $AC$, respectively, such that $BP = CQ$. Prove that $APQM$ is a cyclic quadrilateral.
2012 Grigore Moisil Intercounty, 4
[b]a)[/b] Prove that for any two square matrices $ A,B $ of same order the equality $ \text{ord} (AB)=\text{ord} (BA) $ is true.
[b]b)[/b] Show that $ \text{ord} (ab) =\text{ord} (ba) $ if $ a,b $ are elements of a monoid and one of them is an unit.
2019 Ukraine Team Selection Test, 2
There is a regular hexagon that is cut direct to $6n^2$ equilateral triangles (Fig.).
There are arranged $2n$ rooks, neither of which beats each other (the rooks hit in directions parallel to sides of the hexagon). Prove that if we consider chess coloring all $6n^2$ equilateral triangles, then the number of rooks that stand on black triangles will be equal to the number of rooks standing on white triangles.
[img]https://cdn.artofproblemsolving.com/attachments/d/0/43ce6c5c966f60a8ec893d5d8cd31e33c43fc0.png[/img]
[hide=original wording] Є правильний шестикутник, що розрізаний прямими на 6n^2 правильних трикутників (рис. 2). У них розставлені 2n тур, ніякі дві з яких не б'ють одна одну (тура б'є в напрямках, що паралельні до
сторін шестикутника). Доведіть, що якщо розглянути шахове розфарбування всіх 6n^2 правильних трикутників, то тоді кількість тур, що стоять на чорних трикутниках, буде рівна кількості тур, що стоять на білих трикутниках.
[/hide]
2016 Bosnia and Herzegovina Team Selection Test, 1
Let $ABCD$ be a quadrilateral inscribed in circle $k$. Lines $AB$ and $CD$ intersect at point $E$ such that $AB=BE$. Let $F$ be the intersection point of tangents on circle $k$ in points $B$ and $D$, respectively. If the lines $AB$ and $DF$ are parallel, prove that $A$, $C$ and $F$ are collinear.
2022 Tuymaada Olympiad, 8
In an acute triangle $\triangle ABC$ the points $C_m, A_m, B_m$ are the midpoints of $AB, BC, CA$ respectively. Inside the triangle $\triangle ABC$ a point $P$ is chosen so that $\angle PCB = \angle B_mBC$ and $\angle PAB = \angle ABB_m.$ A line passing through $P$ and perpendicular to $AC$ meets the median $BB_m$ at $E.$ Prove that $E$ lies on the circumcircle of the triangle $\triangle A_mB_mC_m.$
[i](K. Ivanov )[/i]
2010 LMT, 16
Determine the number of three digit integers that are equal to $19$ times the sum of its digits.
2019 Lusophon Mathematical Olympiad, 4
Find all the real numbers $a$ and $b$ that satisfy the relation
$2(a^2 + 1)(b^2 + 1) = (a + 1)(b + 1)(ab + 1)$
2015 Postal Coaching, Problem 3
Show that there are no positive integers $a_1,a_2,a_3,a_4,a_5,a_6$ such that
$$(1+a_1 \omega)(1+a_2 \omega)(1+a_3 \omega)(1+a_4 \omega)(1+a_5 \omega)(1+a_6 \omega)$$
is an integer where $\omega$ is an imaginary $5$th root of unity.