This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

III Soros Olympiad 1996 - 97 (Russia), 11.10

In a dihedral angle of measure $c$ two non-intersecting spheres are inscribed, the centers of which are located on a straight line perpendicular to the edge of the dihedral angle. The points of contact of these spheres with the edges of the corner are at distances $a$ and $b$ from the edge. Let us consider an arbitrary plane tangent to these spheres and intersecting the segment connecting their centers. Let us denote by $\phi$ the measure of the angle formed at the intersection of this plane with the faces of a given dihedral angle. Find the greatest value $\phi$.

2019 Purple Comet Problems, 26

Let $D$ be a regular dodecahedron, which is a polyhedron with $20$ vertices, $30$ edges, and $12$ regular pentagon faces. A tetrahedron is a polyhedron with $4$ vertices, $6$ edges, and $4$ triangular faces. Find the number of tetrahedra with positive volume whose vertices are vertices of $D$. [img]https://cdn.artofproblemsolving.com/attachments/c/d/44d11fa3326780941d0b6756fb2e5989c2dc5a.png[/img]

1999 AIME Problems, 15

Consider the paper triangle whose vertices are $(0,0), (34,0),$ and $(16,24).$ The vertices of its midpoint triangle are the midpoints of its sides. A triangular pyramid is formed by folding the triangle along the sides of its midpoint triangle. What is the volume of this pyramid?

2000 Harvard-MIT Mathematics Tournament, 6

Prove that every multiple of $3$ can be written as a sum of four cubes (positive or negatives).

1980 AMC 12/AHSME, 16

Four of the eight vertices of a cube are the vertices of a regular tetrahedron. Find the ratio of the surface area of the cube to the surface area of the tetrahedron. $\text{(A)} \ \sqrt 2 \qquad \text{(B)} \ \sqrt 3 \qquad \text{(C)} \ \sqrt{\frac{3}{2}} \qquad \text{(D)} \ \frac{2}{\sqrt{3}} \qquad \text{(E)} \ 2$

2019 AMC 12/AHSME, 11

How many unordered pairs of edges of a given cube determine a plane? $\textbf{(A) } 21 \qquad\textbf{(B) } 28 \qquad\textbf{(C) } 36 \qquad\textbf{(D) } 42 \qquad\textbf{(E) } 66$

2011 CentroAmerican, 1

Consider a cube with a fly standing at each of its vertices. When a whistle blows, each fly moves to a vertex in the same face as the previous one but diagonally opposite to it. After the whistle blows, in how many ways can the flies change position so that there is no vertex with 2 or more flies?

1998 Romania National Olympiad, 3

Let $ABCD$ be a tetrahedron and $A'$, $B'$, $C'$ be arbitrary points on the edges $[DA]$, $[DB]$, $[DC]$, respectively. One considers the points $P_c \in [AB]$, $P_a \in [BC]$, $P_b \in [AC]$ and $P'_c \in [A'B']$, $P'_a \in [B'C']$, $P'_b \in [A'C']$ such that $$\frac{P_cA}{P_cB}= \frac{P'_cA'}{P'_cB'}=\frac{AA'}{BB'}\,\,\, , \,\,\,\frac{P_aB}{P_aC}= \frac{P'_aB'}{P'_aC'}=\frac{BB'}{CC'}\,\,\, , \,\,\, \frac{P_bC}{P_bA}= \frac{P'_bC'}{P'_bA'}=\frac{CC'}{AA'}$$ Prove that: a) the lines $AP_a,$ $BP_b$, $CP_c$ have a common point $P$ and the lines $A'P'_a$, $B'P'_b$ , $C'P'_c$ have a common point $P'$ b) $\frac{PC}{PP_c}=\frac{P'C'}{P'P'_c} $ c) if $A', B', C'$ are variable points on the edges $[DA]$, $[DB]$, $[DC]$, then the line $PP'$ is always parallel to a fixed line.

1979 Kurschak Competition, 1

The base of a convex pyramid has an odd number of edges. The lateral edges of the pyramid are all equal, and the angles between neighbouring faces are all equal. Show that the base must be a regular polygon.

1966 Czech and Slovak Olympiad III A, 4

Two triangles $ABC,ABD$ (with the common side $c=AB$) are given in space. Triangle $ABC$ is right with hypotenuse $AB$, $ABD$ is equilateral. Denote $\varphi$ the dihedral angle between planes $ABC,ABD$. 1) Determine the length of $CD$ in terms of $a=BC,b=CA,c$ and $\varphi$. 2) Determine all values of $\varphi$ such that the tetrahedron $ABCD$ has four sides of the same length.

1956 Moscow Mathematical Olympiad, 329

Consider positive numbers $h, s_1, s_2$, and a spatial triangle $\vartriangle ABC$. How many ways are there to select a point $D$ so that the height of tetrahedron $ABCD$ drawn from $D$ equals $h$, and the areas of faces $ACD$ and $BCD$ equal $s_1$ and $s_2$, respectively?

2010 Romania National Olympiad, 3

Let $VABCD$ be a regular pyramid, having the square base $ABCD$. Suppose that on the line $AC$ lies a point $M$ such that $VM=MB$ and $(VMB)\perp (VAB)$. Prove that $4AM=3AC$. [i]Mircea Fianu[/i]

2005 India IMO Training Camp, 2

Prove that one can find a $n_{0} \in \mathbb{N}$ such that $\forall m \geq n_{0}$, there exist three positive integers $a$, $b$ , $c$ such that (i) $m^3 < a < b < c < (m+1)^3$; (ii) $abc$ is the cube of an integer.

2015 BMT Spring, 9

Find the side length of the largest square that can be inscribed in the unit cube.

2012 AIME Problems, 8

Cube $ABCDEFGH$, labeled as shown below, has edge length $1$ and is cut by a plane passing through vertex $D$ and the midpoints $M$ and $N$ of $\overline{AB}$ and $\overline{CG}$ respectively. The plane divides the cube into two solids. The volume of the larger of the two solids can be written in the form $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. [asy] draw((0,0)--(10,0)--(10,10)--(0,10)--cycle); draw((0,10)--(4,13)--(14,13)--(10,10)); draw((10,0)--(14,3)--(14,13)); draw((0,0)--(4,3)--(4,13), dashed); draw((4,3)--(14,3), dashed); dot((0,0)); dot((0,10)); dot((10,10)); dot((10,0)); dot((4,3)); dot((14,3)); dot((14,13)); dot((4,13)); dot((14,8)); dot((5,0)); label("A", (0,0), SW); label("B", (10,0), S); label("C", (14,3), E); label("D", (4,3), NW); label("E", (0,10), W); label("F", (10,10), SE); label("G", (14,13), E); label("H", (4,13), NW); label("M", (5,0), S); label("N", (14,8), E); [/asy]

2000 Brazil National Olympiad, 6

Let it be is a wooden unit cube. We cut along every plane which is perpendicular to the segment joining two distinct vertices and bisects it. How many pieces do we get?

1990 Vietnam Team Selection Test, 2

Given a tetrahedron such that product of the opposite edges is $ 1$. Let the angle between the opposite edges be $ \alpha$, $ \beta$, $ \gamma$, and circumradii of four faces be $ R_1$, $ R_2$, $ R_3$, $ R_4$. Prove that \[ \sin^2\alpha \plus{} \sin^2\beta \plus{} \sin^2\gamma\ge\frac {1}{\sqrt {R_1R_2R_3R_4}} \]

Kyiv City MO 1984-93 - geometry, 1992.11.5

The base of the pyramid is a triangle $ABC$, in which $\angle ACB= 30^o$, and the length of the median from the vertex $B$ is twice less than the side $AC$ and is equal to $\alpha$ . All side edges of the pyramid are inclined to the plane of the base at an angle $a$. Determine the cross-sectional area of ​​the pyramid with a plane passing through the vertex $B$ parallel to the edge $AD$ and inclined to the plane of the base at an angle of $\beta$,

2010 Kyrgyzstan National Olympiad, 8

Solve in none-negative integers ${x^3} + 7{x^2} + 35x + 27 = {y^3}$.

1949 Moscow Mathematical Olympiad, 157

a) Prove that if a planar polygon has several axes of symmetry, then all of them intersect at one point. b) A finite solid body is symmetric about two distinct axes. Describe the position of the symmetry planes of the body.

2022 JHMT HS, 2

Four mutually externally tangent spherical apples of radius $4$ are placed on a horizontal flat table. Then, a spherical orange of radius $3$ is placed such that it rests on all the apples. Find the distance from the center of the orange to the table.

1962 IMO, 3

Consider the cube $ABCDA'B'C'D'$ ($ABCD$ and $A'B'C'D'$ are the upper and lower bases, repsectively, and edges $AA', BB', CC', DD'$ are parallel). The point $X$ moves at a constant speed along the perimeter of the square $ABCD$ in the direction $ABCDA$, and the point $Y$ moves at the same rate along the perimiter of the square $B'C'CB$ in the direction $B'C'CBB'$. Points $X$ and $Y$ begin their motion at the same instant from the starting positions $A$ and $B'$, respectively. Determine and draw the locus of the midpionts of the segments $XY$.

2014 Middle European Mathematical Olympiad, 8

Determine all quadruples $(x,y,z,t)$ of positive integers such that \[ 20^x + 14^{2y} = (x + 2y + z)^{zt}.\]

2012 Purple Comet Problems, 26

A paper cup has a base that is a circle with radius $r$, a top that is a circle with radius $2r$, and sides that connect the two circles with straight line segments as shown below. This cup has height $h$ and volume $V$. A second cup that is exactly the same shape as the first is held upright inside the fi rst cup so that its base is a distance of $\tfrac{h}2$ from the base of the fi rst cup. The volume of liquid that will t inside the fi rst cup and outside the second cup can be written $\tfrac{m}{n}\cdot V$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [asy] pair s = (10,1); draw(ellipse((0,0),4,1)^^ellipse((0,-6),2,.5)); fill((3,-6)--(-3,-6)--(0,-2.1)--cycle,white); draw((4,0)--(2,-6)^^(-4,0)--(-2,-6)); draw(shift(s)*ellipse((0,0),4,1)^^shift(s)*ellipse((0,-6),2,.5)); fill(shift(s)*(3,-6)--shift(s)*(-3,-6)--shift(s)*(0,-2.1)--cycle,white); draw(shift(s)*(4,0)--shift(s)*(2,-6)^^shift(s)*(-4,0)--shift(s)*(-2,-6)); pair s = (10,-2); draw(shift(s)*ellipse((0,0),4,1)^^shift(s)*ellipse((0,-6),2,.5)); fill(shift(s)*(3,-6)--shift(s)*(-3,-6)--shift(s)*(0,-4.1)--cycle,white); draw(shift(s)*(4,0)--shift(s)*(2,-6)^^shift(s)*(-4,0)--shift(s)*(-2,-6)); //darn :([/asy]

2012 German National Olympiad, 5

Let $a,b$ be the lengths of two nonadjacent edges of a tetrahedron with inradius $r$. Prove that \[r<\frac{ab}{2(a+b)}.\]