Found problems: 2265
1985 IMO Longlists, 87
Determine the radius of a sphere $S$ that passes through the centroids of each face of a given tetrahedron $T$ inscribed in a unit sphere with center $O$. Also, determine the distance from $O$ to the center of $S$ as a function of the edges of $T.$
2018 PUMaC Team Round, 14
Find the sum of the positive integer solutions to the equation $\left\lfloor\sqrt[3]{x}\right\rfloor+\left\lfloor\sqrt[4]{x}\right\rfloor=4.$
2013 Stanford Mathematics Tournament, 7
A fly and an ant are on one corner of a unit cube. They wish to head to the opposite corner of the cube. The fly can fly through the interior of the cube, while the ant has to walk across the faces of the cube. How much shorter is the fly's path if both insects take the shortest path possible?
2009 Estonia Team Selection Test, 3
Find all natural numbers $n$ for which there exists a convex polyhedron satisfying the following conditions:
(i) Each face is a regular polygon.
(ii) Among the faces, there are polygons with at most two different numbers of edges.
(iii) There are two faces with common edge that are both $n$-gons.
2005 Romania National Olympiad, 3
Let the $ABCA'B'C'$ be a regular prism. The points $M$ and $N$ are the midpoints of the sides $BB'$, respectively $BC$, and the angle between the lines $AB'$ and $BC'$ is of $60^\circ$. Let $O$ and $P$ be the intersection of the lines $A'C$ and $AC'$, with respectively $B'C$ and $C'N$.
a) Prove that $AC' \perp (OPM)$;
b) Find the measure of the angle between the line $AP$ and the plane $(OPM)$.
[i]Mircea Fianu[/i]
1996 AMC 12/AHSME, 10
How many line segments have both their endpoints located at the vertices of a given cube?
$\text{(A)}\ 12 \qquad \text{(B)}\ 15 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 28\qquad \text{(E)}\ 56$
2009 Tournament Of Towns, 5
Suppose that $X$ is an arbitrary point inside a tetrahedron. Through each vertex of the tetrahedron, draw a straight line that is parallel to the line segment connecting $X$ with the intersection point of the medians of the opposite face. Prove that these four lines meet at the same point.
1966 IMO Shortlist, 44
What is the greatest number of balls of radius $1/2$ that can be placed within a rectangular box of size $10 \times 10 \times 1 \ ?$
1996 German National Olympiad, 3
Let be given an arbitrary tetrahedron $ABCD$ with volume $V$. Consider all lines which pass through the barycenter $S$ of the tetrahedron and intersect the edges $AD,BD,CD$ at points $A',B',C$ respectively. It is known that among the obtained tetrahedra there exists one with the minimal volume. Express this minimal volume in terms of $V$
1995 AMC 12/AHSME, 30
A large cube is formed by stacking $27$ unit cubes. A plane is perpendicular to one of the internal diagonals of the large cube and bisects that diagonal. The number of unit cubes that the plane intersects is
[asy]
size(120); defaultpen(linewidth(0.7)); pair slant = (2,1);
for(int i = 0; i < 4; ++i)
draw((0,i)--(3,i)^^(i,0)--(i,3)^^(3,i)--(3,i)+slant^^(i,3)--(i,3)+slant);
for(int i = 1; i < 4; ++i)
draw((0,3)+slant*i/3--(3,3)+slant*i/3^^(3,0)+slant*i/3--(3,3)+slant*i/3);[/asy]
$\textbf{(A)}\ 16\qquad
\textbf{(B)}\ 17 \qquad
\textbf{(C)}\ 18 \qquad
\textbf{(D)}\ 19 \qquad
\textbf{(E)}\ 20$
1992 Tournament Of Towns, (349) 1
We are given a cube with edges of length $n$ cm. At our disposal is a long piece of insulating tape of width $1$ cm. It is required to stick this tape to the cube. The tape may freely cross an edge of the cube on to a different face but it must always be parallel to an edge of the cube. It may not overhang the edge of a face or cross over a vertex. How many pieces of the tape are necessary in order to completely cover the cube? (You may assume that $n$ is an integer.)
(A Spivak)
2009 Germany Team Selection Test, 1
Consider cubes of edge length 5 composed of 125 cubes of edge length 1 where each of the 125 cubes is either coloured black or white. A cube of edge length 5 is called "big", a cube od edge length is called "small". A posititve integer $ n$ is called "representable" if there is a big cube with exactly $ n$ small cubes where each row of five small cubes has an even number of black cubes whose centres lie on a line with distances $ 1,2,3,4$ (zero counts as even number).
(a) What is the smallest and biggest representable number?
(b) Construct 45 representable numbers.
1979 IMO Shortlist, 25
We consider a point $P$ in a plane $p$ and a point $Q \not\in p$. Determine all the points $R$ from $p$ for which \[ \frac{QP+PR}{QR} \] is maximum.
2017 Israel Oral Olympiad, 4
What is the shortest possible side length of a four-dimensional hypercube that contains a regular octahedron with side 1?
MMPC Part II 1958 - 95, 1966
[b]p1.[/b] Each point in the interior and on the boundary of a square of side $2$ inches is colored either red or blue. Prove that there exists at least one pair of points of the same color whose distance apart is not less than $-\sqrt5$ inches.
[b]p2.[/b] $ABC$ is an equilateral triangle of altitude $h$. A circle with center $0$ and radius $h$ is tangent to side $AB$ at $Z$ and intersects side $AC$ in point $X$ and side $BC$ in point $Y$. Prove that the circular arc $XZY$ has measure $60^o$.
[img]https://cdn.artofproblemsolving.com/attachments/b/e/ac70942f7a14cd0759ac682c3af3551687dd69.png[/img]
[b]p3.[/b] Find all of the real and complex solutions (if any exist) of the equation $x^7 + 7^7 = (x + 7)^7$
[b]p4.[/b] The four points $A, B, C$, and $D$ are not in the same plane. Given that the three angles, angle $ABC$, angle $BCD$, and angle $CDA$, are all right angles, prove that the fourth angle, angle $DAB$, of this skew quadrilateral is acute.
[b]p5.[/b] $A, B, C$ and $D$ are four positive whole numbers with the following properties:
(i) each is less than the sum of the other three, and
(ii) each is a factor of the sum of the other three.
Prove that at least two of the numbers must be equal.
(An example of four such numbers: $A = 4$, $B = 4$, $C = 2$, $D = 2$.)
[b]p6.[/b] $S$ is a set of six points and $L$ is a set of straight line segments connecting certain pairs of points in $S$ so that each point of $S$ is connected with at least four of the other points. Let $A$ and $B$ denote two arbitrary points of $S$. Show that among the triangles having sides in $L$ and vertices in $S$ there are two with the properties:
(i) The two triangles have no common vertex.
(ii) $A$ is a vertex of one of the triangles, and $B$ is a vertex of the other.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1985 AMC 12/AHSME, 12
Let's write p,q, and r as three distinct prime numbers, where 1 is not a prime. Which of the following is the smallest positive perfect cube leaving $ n \equal{} pq^2r^4$ as a divisor?
$ \textbf{(A)}\ p^8q^8r^8\qquad
\textbf{(B)}\ (pq^2r^2)^3\qquad
\textbf{(C)}\ (p^2q^2r^2)^3\qquad
\textbf{(D)}\ (pqr^2)^3\qquad
\textbf{(E)}\ 4p^3q^3r^3$
2020 BMT Fall, 5
A Yule log is shaped like a right cylinder with height $10$ and diameter $5$. Freya cuts it parallel to its bases into $9$ right cylindrical slices. After Freya cut it, the combined surface area of the slices of the Yule log increased by $a\pi$. Compute $a$.
2016 BMT Spring, 19
Regular tetrahedron $P_1P_2P_3P_4$ has side length $1$. Define $P_i$ for $i > 4$ to be the centroid of tetrahedron $P_{i-1}P_{i-2}P_{i-3}P_{i-4}$, and $P_{ \infty} = \lim_{n\to \infty} P_n$. What is the length of $P_5P_{ \infty}$?
2009 Indonesia TST, 3
Let $ x,y,z$ be real numbers. Find the minimum value of $ x^2\plus{}y^2\plus{}z^2$ if $ x^3\plus{}y^3\plus{}z^3\minus{}3xyz\equal{}1$.
1967 German National Olympiad, 6
Prove the following theorem:
If there are $n$ pairs of different points $P_i$, $i = 1, 2, ..., n$, $n > 2$ in three dimensions space, such that each of them is at a smaller distance from one and the same point $Q$ than any other $P_i$, then $n < 15$.
2012 AMC 10, 23
A solid tetrahedron is sliced off a solid wooden unit cube by a plane passing through two nonadjacent vertices on one face and one vertex on the opposite face not adjacent to either of the first two vertices. The tetrahedron is discarded and the remaining portion of the cube is placed on a table with the cut surface face down. What is the height of this object?
$ \textbf{(A)}\ \dfrac{\sqrt{3}}{3}\qquad\textbf{(B)}\ \dfrac{2\sqrt{2}}{3}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ \dfrac{2\sqrt{3}}{3}\qquad\textbf{(E)}\ \sqrt{2} $
1966 Kurschak Competition, 1
Can we arrange $5$ points in space to form a pentagon with equal sides such that the angle between each pair of adjacent edges is $90^o$?
1996 French Mathematical Olympiad, Problem 3
(a) Let there be given a rectangular parallelepiped. Show that some four of its vertices determine a tetrahedron whose all faces are right triangles.
(b) Conversely, prove that every tetrahedron whose all faces are right triangles can be obtained by selecting four vertices of a rectangular parallelepiped.
(c) Now investigate such tetrahedra which also have at least two isosceles faces. Given the length $a$ of the shortest edge, compute the lengths of the other edges.
2007 F = Ma, 21
If the rotational inertia of a sphere about an axis through the center of the sphere is $I$, what is the rotational inertia of another sphere that has the same density, but has twice the radius?
$ \textbf{(A)}\ 2I \qquad\textbf{(B)}\ 4I \qquad\textbf{(C)}\ 8I\qquad\textbf{(D)}\ 16I\qquad\textbf{(E)}\ 32I $
1981 Polish MO Finals, 1
Two intersecting lines $a$ and $b$ are given in a plane. Consider all pairs of orthogonal planes $\alpha$, $\beta$ such that $a \subset \alpha$ and $b\subset \beta$. Prove that there is a circle such that every its point lies on the line $\alpha \cap \beta$ for some $\alpha$ and $\beta$.