This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1967 IMO Longlists, 34

Faces of a convex polyhedron are six squares and 8 equilateral triangles and each edge is a common side for one triangle and one square. All dihedral angles obtained from the triangle and square with a common edge, are equal. Prove that it is possible to circumscribe a sphere around the polyhedron, and compute the ratio of the squares of volumes of that polyhedron and of the ball whose boundary is the circumscribed sphere.

1983 Austrian-Polish Competition, 6

Six straight lines are given in space. Among any three of them, two are perpendicular. Show that the given lines can be labeled $\ell_1,...,\ell_6$ in such a way that $\ell_1, \ell_2, \ell_3$ are pairwise perpendicular, and so are $\ell_4, \ell_5, \ell_6$.

1999 All-Russian Olympiad Regional Round, 11.4

A polyhedron is circumscribed around a sphere. Let's call its face [i]large [/i] if the projection of the sphere onto the plane of the face falls entirely within the face. Prove that there are no more than 6 large faces.

2005 Miklós Schweitzer, 10

Given 5 nonzero vectors in three-dimensional Euclidean space, prove that the sum of their pairwise angles is at most $6\pi$.

1997 French Mathematical Olympiad, Problem 3

Let $C$ be a unit cube and let $p$ denote the orthogonal projection onto the plane. Find the maximum area of $p(C)$.

1966 IMO Longlists, 44

What is the greatest number of balls of radius $1/2$ that can be placed within a rectangular box of size $10 \times 10 \times 1 \ ?$

2007 Ukraine Team Selection Test, 6

Find all primes $ p$ for that there is an integer $ n$ such that there are no integers $ x,y$ with $ x^3 \plus{} y^3 \equiv n \mod p$ (so not all residues are the sum of two cubes). E.g. for $ p \equal{} 7$, one could set $ n \equal{} \pm 3$ since $ x^3,y^3 \equiv 0 , \pm 1 \mod 7$, thus $ x^3 \plus{} y^3 \equiv 0 , \pm 1 , \pm 2 \mod 7$ only.

2009 Spain Mathematical Olympiad, 3

Some edges are painted in red. We say that a coloring of this kind is [i]good[/i], if for each vertex of the polyhedron, there exists an edge which concurs in that vertex and is not painted red. Moreover, we say that a coloring where some of the edges of a regular polyhedron is [i]completely good[/i], if in addition to being [i]good[/i], no face of the polyhedron has all its edges painted red. What regular polyhedrons is equal the maximum number of edges that can be painted in a [i]good[/i] color and a [i]completely good[/i]? Explain your answer.

2008 AMC 10, 17

An equilateral triangle has side length $ 6$. What is the area of the region containing all points that are outside the triangle and not more than $ 3$ units from a point of the triangle? $ \textbf{(A)}\ 36\plus{}24\sqrt{3} \qquad \textbf{(B)}\ 54\plus{}9\pi \qquad \textbf{(C)}\ 54\plus{}18\sqrt{3}\plus{}6\pi \qquad \textbf{(D)}\ \left(2\sqrt{3}\plus{}3\right)^2\pi \\ \textbf{(E)}\ 9\left(\sqrt{3}\plus{}1\right)^2\pi$

2015 Sharygin Geometry Olympiad, P23

A tetrahedron $ABCD$ is given. The incircles of triangles $ ABC$ and $ABD$ with centers $O_1, O_2$, touch $AB$ at points $T_1, T_2$. The plane $\pi_{AB}$ passing through the midpoint of $T_1T_2$ is perpendicular to $O_1O_2$. The planes $\pi_{AC},\pi_{BC}, \pi_{AD}, \pi_{BD}, \pi_{CD}$ are defined similarly. Prove that these six planes have a common point.

1971 IMO Shortlist, 7

All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$. [b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length; [b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.

2010 Saint Petersburg Mathematical Olympiad, 5

$SABCD$ is quadrangular pyramid. Lateral faces are acute triangles with orthocenters lying in one plane. $ABCD$ is base of pyramid and $AC$ and $BD$ intersects at $P$, where $SP$ is height of pyramid. Prove that $AC \perp BD$

2001 AMC 12/AHSME, 8

Which of the cones listed below can be formed from a $ 252^\circ$ sector of a circle of radius $ 10$ by aligning the two straight sides? [asy]import graph;unitsize(1.5cm);defaultpen(fontsize(8pt));draw(Arc((0,0),1,-72,180),linewidth(.8pt));draw(dir(288)--(0,0)--(-1,0),linewidth(.8pt));label("$10$",(-0.5,0),S);draw(Arc((0,0),0.1,-72,180));label("$252^{\circ}$",(0.05,0.05),NE);[/asy] [asy] import three; picture mainframe; defaultpen(fontsize(11pt)); picture conePic(picture pic, real r, real h, real sh) { size(pic, 3cm); triple eye = (11, 0, 5); currentprojection = perspective(eye); real R = 1, y = 2; triple center = (0, 0, 0); triple radPt = (0, R, 0); triple negRadPt = (0, -R, 0); triple heightPt = (0, 0, y); draw(pic, arc(center, radPt, negRadPt, heightPt, CW)); draw(pic, arc(center, radPt, negRadPt, heightPt, CCW), linetype("8 8")); draw(pic, center--radPt, linetype("8 8")); draw(pic, center--heightPt, linetype("8 8")); draw(pic, negRadPt--heightPt--radPt); label(pic, (string) r, center--radPt, dir(270)); if (h != 0) { label(pic, (string) h, heightPt--center, dir(0)); } if (sh != 0) { label(pic, (string) sh, heightPt--radPt, dir(0)); } return pic; } picture pic1; pic1 = conePic(pic1, 6, 0, 10); picture pic2; pic2 = conePic(pic2, 6, 10, 0); picture pic3; pic3 = conePic(pic3, 7, 0, 10); picture pic4; pic4 = conePic(pic4, 7, 10, 0); picture pic5; pic5 = conePic(pic5, 8, 0, 10); picture aux1; picture aux2; picture aux3; add(aux1, pic1.fit(), (0,0), W); label(aux1, "$\textbf{(A)}$", (0,0), 22W, linewidth(4)); label(aux1, "$\textbf{(B)}$", (0,0), 3E); add(aux1, pic2.fit(), (0,0), 35E); add(aux2, aux1.fit(), (0,0), W); label(aux2, "$\textbf{(C)}$", (0,0), 3E); add(aux2, pic3.fit(), (0,0), 35E); add(aux3, aux2.fit(), (0,0), W); label(aux3, "$\textbf{(D)}$", (0,0), 3E); add(aux3, pic4.fit(), (0,0), 35E); add(mainframe, aux3.fit(), (0,0), W); label(mainframe, "$\textbf{(E)}$", (0,0), 3E); add(mainframe, pic5.fit(), (0,0), 35E); add(mainframe.fit(), (0,0), N); [/asy]

1935 Moscow Mathematical Olympiad, 003

The base of a pyramid is an isosceles triangle with the vertex angle $\alpha$. The pyramid’s lateral edges are at angle $\phi$ to the base. Find the dihedral angle $\theta$ at the edge connecting the pyramid’s vertex to that of angle $\alpha$.

2002 Flanders Math Olympiad, 4

A lamp is situated at point $A$ and shines inside the cube. A (massive) square is hung on the midpoints of the 4 vertical faces. What's the area of its shadow? [img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=285[/img]

1986 Bulgaria National Olympiad, Problem 3

A regular tetrahedron of unit edge is given. Find the volume of the maximal cube contained in the tetrahedron, whose one vertex lies in the feet of an altitude of the tetrahedron.

2017 Sharygin Geometry Olympiad, 6

10.6 Let the insphere of a pyramid $SABC$ touch the faces $SAB, SBC, SCA$ at $D, E, F$ respectively. Find all the possible values of the sum of the angles $SDA, SEB, SFC$.

1975 Polish MO Finals, 2

On the surface of a regular tetrahedron of edge length $1$ are given finitely many segments such that every two vertices of the tetrahedron can be joined by a polygonal line consisting of given segments. Can the sum of the lengths of the given segments be less than $1+\sqrt3 $?

2005 Harvard-MIT Mathematics Tournament, 2

Let $ABCD$ be a regular tetrahedron with side length $2$. The plane parallel to edges $AB$ and $CD$ and lying halfway between them cuts $ABCD$ into two pieces. Find the surface area of one of these pieces.

1965 Miklós Schweitzer, 7

Prove that any uncountable subset of the Euclidean $ n$-space contains an countable subset with the property that the distances between different pairs of points are different (that is, for any points $ P_1 \not\equal{} P_2$ and $ Q_1\not\equal{} Q_2$ of this subset, $ \overline{P_1P_2}\equal{}\overline{Q_1Q_2}$ implies either $ P_1\equal{}Q_1$ and $ P_2\equal{}Q_2$, or $ P_1\equal{}Q_2$ and $ P_2\equal{}Q_1$). Show that a similar statement is not valid if the Euclidean $ n$-space is replaced with a (separable) Hilbert space.

PEN H Problems, 25

What is the smallest positive integer $t$ such that there exist integers $x_{1},x_{2}, \cdots, x_{t}$ with \[{x_{1}}^{3}+{x_{2}}^{3}+\cdots+{x_{t}}^{3}=2002^{2002}\;\;?\]

1967 IMO Shortlist, 6

Three disks of diameter $d$ are touching a sphere in their centers. Besides, every disk touches the other two disks. How to choose the radius $R$ of the sphere in order that axis of the whole figure has an angle of $60^\circ$ with the line connecting the center of the sphere with the point of the disks which is at the largest distance from the axis ? (The axis of the figure is the line having the property that rotation of the figure of $120^\circ$ around that line brings the figure in the initial position. Disks are all on one side of the plane, passing through the center of the sphere and orthogonal to the axis).

2008 Nordic, 4

The difference between the cubes of two consecutive positive integers is equal to $n^2$ for a positive integer $n$. Show that $n$ is the sum of two squares.

2014 Vietnam National Olympiad, 3

Find all sets of not necessary distinct 2014 rationals such that:if we remove an arbitrary number in the set, we can divide remaining 2013 numbers into three sets such that each set has exactly 671 elements and the product of all elements in each set are the same.

2013 Oral Moscow Geometry Olympiad, 3

Is there a polyhedron whose area ratio of any two faces is at least $2$ ?