This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 252

2012 Math Prize For Girls Problems, 16

Say that a complex number $z$ is [i]three-presentable[/i] if there is a complex number $w$ of absolute value $3$ such that $z = w - \frac{1}{w}$. Let $T$ be the set of all three-presentable complex numbers. The set $T$ forms a closed curve in the complex plane. What is the area inside $T$?

2013 Princeton University Math Competition, 8

If $x,y$ are real, then the $\textit{absolute value}$ of the complex number $z=x+yi$ is \[|z|=\sqrt{x^2+y^2}.\] Find the number of polynomials $f(t)=A_0+A_1t+A_2t^2+A_3t^3+t^4$ such that $A_0,\ldots,A_3$ are integers and all roots of $f$ in the complex plane have absolute value $\leq 1$.

2011 Dutch BxMO TST, 3

Find all triples $(x, y, z)$ of real numbers that satisfy $x^2 + y^2 + z^2 + 1 = xy + yz + zx +|x - 2y + z|$.

1975 Czech and Slovak Olympiad III A, 4

Determine all real values of parameter $p$ such that the equation \[|x-2|+|y-3|+y=p\] is an equation of a ray in the plane $xy.$

2022 Belarusian National Olympiad, 11.7

Numbers $-1011, -1010, \ldots, -1, 1, \ldots, 1011$ in some order form the sequence $a_1,a_2,\ldots, a_{2022}$. Find the maximum possible value of the sum $$|a_1|+|a_1+a_2|+\ldots+|a_1+\ldots+a_{2022}|$$

2019 CCA Math Bonanza, I10

What is the minimum possible value of \[\left|x\right|-\left|x-1\right|+\left|x+2\right|-\left|x-3\right|+\left|x+4\right|-\cdots-\left|x-2019\right|\] over all real $x$? [i]2019 CCA Math Bonanza Individual Round #10[/i]

1956 Moscow Mathematical Olympiad, 342

Given three numbers $x, y, z$ denote the absolute values of the differences of each pair by $x_1,y_1, z_1$. From $x_1, y_1, z_1$ form in the same fashion the numbers $x_2, y_2, z_2$, etc. It is known that $x_n = x,y_n = y, z_n = z$ for some $n$. Find $y$ and $z$ if $x = 1$.

2024 Indonesia TST, A

Given real numbers $x,y,z$ which satisfies $$|x+y+z|+|xy+yz+zx|+|xyz| \le 1$$ Show that $max\{ |x|,|y|,|z|\} \le 1$.

2014 Turkey MO (2nd round), 1

In a bag there are $1007$ black and $1007$ white balls, which are randomly numbered $1$ to $2014$. In every step we draw one ball and put it on the table; also if we want to, we may choose two different colored balls from the table and put them in a different bag. If we do that we earn points equal to the absolute value of their differences. How many points can we guarantee to earn after $2014$ steps?

2005 Polish MO Finals, 3

In a matrix $2n \times 2n$, $n \in N$, are $4n^2$ real numbers with a sum equal zero. The absolute value of each of these numbers is not greater than $1$. Prove that the absolute value of a sum of all the numbers from one column or a row doesn't exceed $n$.

2001 AIME Problems, 14

There are $2n$ complex numbers that satisfy both $z^{28}-z^{8}-1=0$ and $|z|=1$. These numbers have the form $z_{m}=\cos\theta_{m}+i\sin\theta_{m}$, where $0\leq\theta_{1}<\theta_{2}< \dots <\theta_{2n}<360$ and angles are measured in degrees. Find the value of $\theta_{2}+\theta_{4}+\dots+\theta_{2n}$.

1994 Baltic Way, 10

How many positive integers satisfy the following three conditions: a) All digits of the number are from the set $\{1,2,3,4,5\}$; b) The absolute value of the difference between any two consecutive digits is $1$; c) The integer has $1994$ digits?

1978 AMC 12/AHSME, 9

If $x<0$, then $\left|x-\sqrt{(x-1)^2}\right|$ equals $\textbf{(A) }1\qquad\textbf{(B) }1-2x\qquad\textbf{(C) }-2x-1\qquad\textbf{(D) }1+2x\qquad \textbf{(E) }2x-1$

2005 Putnam, B3

Find all differentiable functions $f: (0,\infty)\mapsto (0,\infty)$ for which there is a positive real number $a$ such that \[ f'\left(\frac ax\right)=\frac x{f(x)} \] for all $x>0.$

2022 JBMO Shortlist, A6

Let $a, b,$ and $c$ be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Prove that $$\frac{a^2 + b^2}{2ab} + \frac{b^2 + c^2}{2bc} + \frac{c^2 + a^2}{2ca} + \frac{2(ab + bc + ca)}{3} \ge 5 + |(a - b)(b - c)(c - a)|.$$

2016 Thailand Mathematical Olympiad, 7

Given $P(x)=a_{2016}x^{2016}+a_{2015}x^{2015}+...+a_1x+a_0$ be a polynomial with real coefficients and $a_{2016} \neq 0$ satisfies $|a_1+a_3+...+a_{2015}| > |a_0+a_2+...+a_{2016}|$ Prove that $P(x)$ has an odd number of complex roots with absolute value less than $1$ (count multiple roots also) edited: complex roots

1993 Brazil National Olympiad, 2

A real number with absolute value less than $1$ is written in each cell of an $n\times n$ array, so that the sum of the numbers in each $2\times 2$ square is zero. Show that for odd $n$ the sum of all the numbers is less than $n$.

2018 AMC 12/AHSME, 10

How many ordered pairs of real numbers $(x,y)$ satisfy the following system of equations? \begin{align*}x+3y&=3\\ \big||x|-|y|\big|&=1\end{align*} $\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 3 \qquad \textbf{(D) } 4 \qquad \textbf{(E) } 8 $

1954 Moscow Mathematical Olympiad, 285

The absolute values of all roots of the quadratic equation $x^2+Ax+B = 0$ and $x^2+Cx+D = 0$ are less then $1$. Prove that so are absolute values of the roots of the quadratic equation $x^2 + \frac{A + C}{2} x + \frac{B + D}{2} = 0$.

2009 IMS, 4

In this infinite tree, degree of each vertex is equal to 3. A real number $ \lambda$ is given. We want to assign a real number to each node in such a way that for each node sum of numbers assigned to its neighbors is equal to $ \lambda$ times of the number assigned to this node. Find all $ \lambda$ for which this is possible.

PEN H Problems, 72

Find all pairs $(x, y)$ of positive rational numbers such that $x^{y}=y^{x}$.

2011 AMC 10, 7

Which of the following equations does NOT have a solution? $\textbf{ (A) }\:(x+7)^2=0$ $\textbf{(B) }\:|-3x|+5=0$ $\textbf{ (C) }\:\sqrt{-x}-2=0$ $\textbf{ (D) }\:\sqrt{x}-8=0$ $\textbf{ (E) }\:|-3x|-4=0 $

2005 National High School Mathematics League, 14

Nine balls numbered $1,2,\cdots,9$ are put on nine poines that divide the circle into nine equal parts. The sum of absolute values of the difference between the number of two adjacent balls is $S$. Find the probablity of $S$ takes its minumum value. Note: If one way of putting balls can be the same as another one by rotating or specular-reflecting, then they are considered the same way.

2013 Peru IMO TST, 2

Let $a \geq 3$ be a real number, and $P$ a polynomial of degree $n$ and having real coefficients. Prove that at least one of the following numbers is greater than or equal to $1:$ $$|a^0- P(0)|, \ |a^1-P(1)| , \ |a^2-P(2)|, \cdots, |a^{n + 1}-P(n + 1)|.$$