This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2021 Novosibirsk Oral Olympiad in Geometry, 3

Tags: geometry , angle
Find the angle $BCA$ in the quadrilateral of the figure. [img]https://cdn.artofproblemsolving.com/attachments/0/2/974e23be54125cde8610a78254b59685833b5b.png[/img]

2023 Sharygin Geometry Olympiad, 13

The base $AD$ of a trapezoid $ABCD$ is twice greater than the base $BC$, and the angle $C$ equals one and a half of the angle $A$. The diagonal $AC$ divides angle $C$ into two angles. Which of them is greater?

2006 All-Russian Olympiad Regional Round, 9.6

In an acute triangle $ABC$, the angle bisector$AD$ and altitude $BE$ are drawn. Prove that angle $CED$ is greater than $45^o$.

2007 Postal Coaching, 1

Let $ABC$ be an isosceles triangle with $AC = BC$, and let $M$ be the midpoint of $AB$. Let $P$ be a point inside the triangle such that $\angle PAB =\angle PBC$. Prove that $\angle APM + \angle BPC = 180^o$.

2022 New Zealand MO, 1

$ABCD$ is a rectangle with side lengths $AB = CD = 1$ and $BC = DA = 2$. Let $ M$ be the midpoint of $AD$. Point $P$ lies on the opposite side of line $MB$ to $A$, such that triangle $MBP$ is equilateral. Find the value of $\angle PCB$.

2008 Austria Beginners' Competition, 4

Let $ABC$ be an acute-angled triangle with the property that the bisector of $\angle BAC$, the altitude through $B$ and the perpendicular bisector of $AB$ intersect in one point. Determine the angle $\alpha = \angle BAC$.

Estonia Open Senior - geometry, 2018.2.5

Let $A'$ be the result of reflection of vertex $A$ of triangle ABC through line $BC$ and let $B'$ be the result of reflection of vertex $B$ through line $AC$. Given that $\angle BA' C = \angle BB'C$, can the largest angle of triangle $ABC$ be located: a) At vertex $A$, b) At vertex $B$, c) At vertex $C$?

2019 Oral Moscow Geometry Olympiad, 1

Circle inscribed in square $ABCD$ , is tangent to sides $AB$ and $CD$ at points $M$ and $K$ respectively. Line $BK$ intersects this circle at the point $L, X$ is the midpoint of $KL$. Find the angle $\angle MXK $.

2022 Yasinsky Geometry Olympiad, 3

In an isosceles right triangle $ABC$ with a right angle $C$, point $M$ is the midpoint of leg $AC$. At the perpendicular bisector of $AC$, point $D$ was chosen such that $\angle CDM = 30^o$, and $D$ and $B$ lie on different sides of $AC$. Find the angle $\angle ABD$. (Volodymyr Petruk)

2020 Estonia Team Selection Test, 2

Let $n$ be an integer, $n \ge 3$. Select $n$ points on the plane, none of which are three on the same line. Consider all triangles with vertices at selected points, denote the smallest of all the interior angles of these triangles by the variable $\alpha$. Find the largest possible value of $\alpha$ and identify all the selected $n$ point placements for which the max occurs.

2017 Junior Balkan Team Selection Tests - Romania, 4

Let $ABC$ be a right triangle, with the right angle at $A$. The altitude from $A$ meets $BC$ at $H$ and $M$ is the midpoint of the hypotenuse $[BC]$. On the legs, in the exterior of the triangle, equilateral triangles $BAP$ and $ACQ$ are constructed. If $N$ is the intersection point of the lines $AM$ and $PQ$, prove that the angles $\angle NHP$ and $\angle AHQ$ are equal. Miguel Ochoa Sanchez and Leonard Giugiuc

2013 Tournament of Towns, 4

Let $ABC$ be an isosceles triangle. Suppose that points $K$ and $L$ are chosen on lateral sides $AB$ and $AC$ respectively so that $AK = CL$ and $\angle ALK + \angle LKB = 60^o$. Prove that $KL = BC$.

2002 Estonia National Olympiad, 2

Let $ABC$ be a non-right triangle with its altitudes intersecting in point $H$. Prove that $ABH$ is an acute triangle if and only if $\angle ACB$ is obtuse.

2010 Contests, 3

Consider triangle $ABC$ with $AB = AC$ and $\angle A = 40 ^o$. The points $S$ and $T$ are on the sides $AB$ and $BC$, respectively, so that $\angle BAT = \angle BCS= 10 ^o$. The lines $AT$ and $CS$ intersect at point $P$. Prove that $BT = 2PT$.

2015 Sharygin Geometry Olympiad, 2

A circle passing through $A, B$ and the orthocenter of triangle $ABC$ meets sides $AC, BC$ at their inner points. Prove that $60^o < \angle C < 90^o$ . (A. Blinkov)

2004 Germany Team Selection Test, 2

Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles. [i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]

2008 Tournament Of Towns, 7

Tags: geometry , angle
A convex quadrilateral $ABCD$ has no parallel sides. The angles between the diagonal $AC$ and the four sides are $55^o, 55^o, 19^o$ and $16^o$ in some order. Determine all possible values of the acute angle between $AC$ and $BD$.

2020 Iranian Geometry Olympiad, 2

Let $ABC$ be an isosceles triangle ($AB = AC$) with its circumcenter $O$. Point $N$ is the midpoint of the segment $BC$ and point $M$ is the reflection of the point $N$ with respect to the side $AC$. Suppose that $T$ is a point so that $ANBT$ is a rectangle. Prove that $\angle OMT = \frac{1}{2} \angle BAC$. [i]Proposed by Ali Zamani[/i]

2020 Ukrainian Geometry Olympiad - December, 5

In an acute triangle $ABC$ with an angle $\angle ACB =75^o$, altitudes $AA_3,BB_3$ intersect the circumscribed circle at points $A_1,B_1$ respectively. On the lines $BC$ and $CA$ select points $A_2$ and $B_2$ respectively suchthat the line $B_1B_2$ is parallel to the line $BC$ and the line $A_1A_2$ is parallel to the line $AC$ . Let $M$ be the midpoint of the segment $A_2B_2$. Find in degrees the measure of the angle $\angle B_3MA_3$.

V Soros Olympiad 1998 - 99 (Russia), 10.6

Tags: geometry , angle
The straight line containing the centers of the circumscribed and inscribed circles of triangle $ABC$ intersects rays $BA$ and $BC$ and forms an angle with the altitude to side $BC$ equal to half the angle $\angle BAC$. What is angle $\angle ABC$?

2016 India Regional Mathematical Olympiad, 7

Tags: geometry , angle
Two of the Geometry box tools are placed on the table as shown. Determine the angle $\angle ABC$ [img]https://2.bp.blogspot.com/--DWVwVQJgMM/XU1OK08PSUI/AAAAAAAAKfs/dgZeYwiYOrQJE4eKQT5s13GQdBEHPqy9QCK4BGAYYCw/s1600/prmo%2B16%2BChandigarh%2Bp7.png[/img]