This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1065

2015 Kurschak Competition, 2

Consider a triangle $ABC$ and a point $D$ on its side $\overline{AB}$. Let $I$ be a point inside $\triangle ABC$ on the angle bisector of $ACB$. The second intersections of lines $AI$ and $CI$ with circle $ACD$ are $P$ and $Q$, respectively. Similarly, the second intersection of lines $BI$ and $CI$ with circle $BCD$ are $R$ and $S$, respectively. Show that if $P\neq Q$ and $R\neq S$, then lines $AB$, $PQ$ and $RS$ pass through a point or are parallel.

2004 Germany Team Selection Test, 1

The $A$-excircle of a triangle $ABC$ touches the side $BC$ at the point $K$ and the extended side $AB$ at the point $L$. The $B$-excircle touches the lines $BA$ and $BC$ at the points $M$ and $N$, respectively. The lines $KL$ and $MN$ meet at the point $X$. Show that the line $CX$ bisects the angle $ACN$.

2021 Nigerian Senior MO Round 2, 5

let $ABCD$ be a cyclic quadrilateral with $E$,an interior point such that $AB=AD=AE=BC$. Let $DE$ meet the circumcircle of $BEC$ again at $F$. Suppose a common tangent to the circumcircle of $BEC$ and $DEC$ touch the circles at $F$ and $G$ respectively. Show that $GE$ is the external angle bisector of angle $BEF$

2023 Moldova EGMO TST, 10

Cirlce $\Omega$ is inscribed in triangle $ABC$ with $\angle BAC=40$. Point $D$ is inside the angle $BAC$ and is the intersection of exterior bisectors of angles $B$ and $C$ with the common side $BC$. Tangent form $D$ touches $\Omega$ in $E$. FInd $\angle BEC$.

2015 Estonia Team Selection Test, 9

The orthocenter of an acute triangle $ABC$ is $H$. Let $K$ and $P$ be the midpoints of lines $BC$ and $AH$, respectively. The angle bisector drawn from the vertex $A$ of the triangle $ABC$ intersects with line $KP$ at $D$. Prove that $HD\perp AD$.

2010 ELMO Shortlist, 1

Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent. [i]Carl Lian.[/i]

2011 Olympic Revenge, 4

Let $ABCD$ to be a quadrilateral inscribed in a circle $\Gamma$. Let $r$ and $s$ to be the tangents to $\Gamma$ through $B$ and $C$, respectively, $M$ the intersection between the lines $r$ and $AD$ and $N$ the intersection between the lines $s$ and $AD$. After all, let $E$ to be the intersection between the lines $BN$ and $CM$, $F$ the intersection between the lines $AE$ and $BC$ and $L$ the midpoint of $BC$. Prove that the circuncircle of the triangle $DLF$ is tangent to $\Gamma$.

2012 Oral Moscow Geometry Olympiad, 6

Restore the triangle with a compass and a ruler given the intersection point of altitudes and the feet of the median and angle bisectors drawn to one side. (No research required.)

2010 All-Russian Olympiad Regional Round, 10.3

In triangle $ABC$, the angle bisectors $AD$, $BE$ and $CF$ are drawn, intersecting at point $I$. The perpendicular bisector of the segment $AD$ intersects lines $BE$ and $CF$ at points $M$ and $N$, respectively. Prove that points $A$, $I$, $M$ and $ N$ lie on the same circle.

2010 Indonesia TST, 4

Let $ ABC$ be a non-obtuse triangle with $ CH$ and $ CM$ are the altitude and median, respectively. The angle bisector of $ \angle BAC$ intersects $ CH$ and $ CM$ at $ P$ and $ Q$, respectively. Assume that \[ \angle ABP\equal{}\angle PBQ\equal{}\angle QBC,\] (a) prove that $ ABC$ is a right-angled triangle, and (b) calculate $ \dfrac{BP}{CH}$. [i]Soewono, Bandung[/i]

2013 Switzerland - Final Round, 10

Let $ABCD$ be a tangential quadrilateral with $BC> BA$. The point $P$ is on the segment $BC$, such that $BP = BA$ . Show that the bisector of $\angle BCD$, the perpendicular on line $BC$ through $P$ and the perpendicular on $BD$ through $A$, intersect at one point.

2010 Contests, 1

Let $ ABC$ be a triangle with circum-circle $ \Gamma$. Let $ M$ be a point in the interior of triangle $ ABC$ which is also on the bisector of $ \angle A$. Let $ AM, BM, CM$ meet $ \Gamma$ in $ A_{1}, B_{1}, C_{1}$ respectively. Suppose $ P$ is the point of intersection of $ A_{1}C_{1}$ with $ AB$; and $ Q$ is the point of intersection of $ A_{1}B_{1}$ with $ AC$. Prove that $ PQ$ is parallel to $ BC$.

2024 Kyiv City MO Round 1, Problem 2

Let $BL, AD$ be the bisector and the altitude correspondingly of an acute triangle ABC. They intersect at point $T$. It turned out that the altitude $LK$ of $\triangle ALB$ is divided in half by the line $AD$. Prove that $KT \perp BL$. [i]Proposed by Mariia Rozhkova[/i]

2014 Saudi Arabia IMO TST, 4

Points $A_1,~ B_1,~ C_1$ lie on the sides $BC,~ AC$ and $AB$ of a triangle $ABC$, respectively, such that $AB_1 -AC_1 = CA_1 -CB_1 = BC_1 -BA_1$. Let $I_A,~ I_B,~ I_C$ be the incenters of triangles $AB_1C_1,~ A_1BC_1$ and $A_1B_1C$ respectively. Prove that the circumcenter of triangle $I_AI_BI_C$, is the incenter of triangle $ABC$.

1969 IMO Longlists, 50

$(NET 5)$ The bisectors of the exterior angles of a pentagon $B_1B_2B_3B_4B_5$ form another pentagon $A_1A_2A_3A_4A_5.$ Construct $B_1B_2B_3B_4B_5$ from the given pentagon $A_1A_2A_3A_4A_5.$

Champions Tournament Seniors - geometry, 2003.1

Consider the triangle $ABC$, in which $AB > AC$. Let $P$ and $Q$ be the feet of the perpendiculars dropped from the vertices $B$ and $C$ on the bisector of the angle $BAC$, respectively. On the line $BC$ note point $B$ such that $AD \perp AP.$ Prove that the lines $BQ, PC$ and $AD$ intersect at one point.

2007 JBMO Shortlist, 2

Let $ABCD$ be a convex quadrilateral with $\angle{DAC}= \angle{BDC}= 36^\circ$ , $\angle{CBD}= 18^\circ$ and $\angle{BAC}= 72^\circ$. The diagonals and intersect at point $P$ . Determine the measure of $\angle{APD}$.

2008 Rioplatense Mathematical Olympiad, Level 3, 2

In triangle $ABC$, where $AB<AC$, let $X$, $Y$, $Z$ denote the points where the incircle is tangent to $BC$, $CA$, $AB$, respectively. On the circumcircle of $ABC$, let $U$ denote the midpoint of the arc $BC$ that contains the point $A$. The line $UX$ meets the circumcircle again at the point $K$. Let $T$ denote the point of intersection of $AK$ and $YZ$. Prove that $XT$ is perpendicular to $YZ$.

1998 National Olympiad First Round, 17

In triangle $ ABC$, internal bisector of angle $ A$ intersects with $ BC$ at $ D$. Let $ E$ be a point on $ \left[CB\right.$ such that $ \left|DE\right|\equal{}\left|DB\right|\plus{}\left|BE\right|$. The circle through $ A$, $ D$, $ E$ intersects $ AB$ at $ F$, again. If $ \left|BE\right|\equal{}\left|AC\right|\equal{}7$, $ \left|AD\right|\equal{}2\sqrt{7}$ and $ \left|AB\right|\equal{}5$, then $ \left|BF\right|$ is $\textbf{(A)}\ \frac {7\sqrt {5} }{5} \qquad\textbf{(B)}\ \sqrt {7} \qquad\textbf{(C)}\ 2\sqrt {2} \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \sqrt {10}$

2004 France Team Selection Test, 2

Let $ABCD$ be a parallelogram. Let $M$ be a point on the side $AB$ and $N$ be a point on the side $BC$ such that the segments $AM$ and $CN$ have equal lengths and are non-zero. The lines $AN$ and $CM$ meet at $Q$. Prove that the line $DQ$ is the bisector of the angle $\measuredangle ADC$. [i]Alternative formulation.[/i] Let $ABCD$ be a parallelogram. Let $M$ and $N$ be points on the sides $AB$ and $BC$, respectively, such that $AM=CN\neq 0$. The lines $AN$ and $CM$ intersect at a point $Q$. Prove that the point $Q$ lies on the bisector of the angle $\measuredangle ADC$.

2004 Manhattan Mathematical Olympiad, 4

We say that a circle is [i]half-inscribed[/i] in a triangle, if its center lies on one side of the triangle, and it is tangent to the other two sides. Show that a triangle that has two half-inscribed circles of equal radii, is isosceles. (Recall that a triangle is said to be [i]isosceles[/i], if it has two sides of equal length.)

2008 China Girls Math Olympiad, 5

In convex quadrilateral $ ABCD$, $ AB \equal{} BC$ and $ AD \equal{} DC$. Point $ E$ lies on segment $ AB$ and point $ F$ lies on segment $ AD$ such that $ B$, $ E$, $ F$, $ D$ lie on a circle. Point $ P$ is such that triangles $ DPE$ and $ ADC$ are similar and the corresponding vertices are in the same orientation (clockwise or counterclockwise). Point $ Q$ is such that triangles $ BQF$ and $ ABC$ are similar and the corresponding vertices are in the same orientation. Prove that points $ A$, $ P$, $ Q$ are collinear.

2016 Saint Petersburg Mathematical Olympiad, 3

The circle inscribed in the triangle $ABC$ is tangent to side $AC$ at point $B_1$, and to side $BC$ at point $A_1$. On the side $AB$ there is a point $K$ such that $AK = KB_1, BK = KA_1$. Prove that $ \angle ACB\ge 60$

2006 Turkey Team Selection Test, 2

From a point $Q$ on a circle with diameter $AB$ different from $A$ and $B$, we draw a perpendicular to $AB$, $QH$, where $H$ lies on $AB$. The intersection points of the circle of diameter $AB$ and the circle of center $Q$ and radius $QH$ are $C$ and $D$. Prove that $CD$ bisects $QH$.

2010 India National Olympiad, 1

Let $ ABC$ be a triangle with circum-circle $ \Gamma$. Let $ M$ be a point in the interior of triangle $ ABC$ which is also on the bisector of $ \angle A$. Let $ AM, BM, CM$ meet $ \Gamma$ in $ A_{1}, B_{1}, C_{1}$ respectively. Suppose $ P$ is the point of intersection of $ A_{1}C_{1}$ with $ AB$; and $ Q$ is the point of intersection of $ A_{1}B_{1}$ with $ AC$. Prove that $ PQ$ is parallel to $ BC$.