This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 68

1991 Greece National Olympiad, 2

Let $O$ be the circumcenter of triangle $ABC$ and let $A_1,B_1,C_1$ be the midpoints of arcs $BC, CA,AB$ respectively. If $I$ is the incenter of triangle $ABC$, prove that $$\overrightarrow{OI}= \overrightarrow{OA_1}+ \overrightarrow{OB_1}+ \overrightarrow{OC_1}.$$

2023 Romania Team Selection Test, P3

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

2018 Dutch IMO TST, 4

In a non-isosceles triangle $ABC$ the centre of the incircle is denoted by $I$. The other intersection point of the angle bisector of $\angle BAC$ and the circumcircle of $\vartriangle ABC$ is $D$. The line through $I$ perpendicular to $AD$ intersects $BC$ in $F$. The midpoint of the circle arc $BC$ on which $A$ lies, is denoted by $M$. The other intersection point of the line $MI$ and the circle through $B, I$ and $C$, is denoted by $N$. Prove that $FN$ is tangent to the circle through $B, I$ and $C$.

2023 Indonesia TST, 1

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

2017 Costa Rica - Final Round, G4

In triangle $ABC$ with incenter $I$ and circumcircle $\omega$, the tangent through $C$ to $\omega$ intersects $AB$ at point $D$. The angle bisector of $\angle CDB$ intersects $AI$ and $BI$ at $E$ and $F$, respectively. Let $M$ be the midpoint of $[EF]$. Prove that line $MI$ passes through the midpoint of arc $ACB$ of $w$ .

Ukraine Correspondence MO - geometry, 2019.11

Let $O$ be the center of the circle circumscribed around the acute triangle $ABC$, and let $N$ be the midpoint of the arc $ABC$ of this circle. On the sides $AB$ and $BC$ mark points $D$ and $E$ respectively, such that the point $O$ lies on the segment $DE$. The lines $DN$ and $BC$ intersect at the point $P$, and the lines $EN$ and $AB$ intersect at the point $Q$. Prove that $PQ \perp AC$.

2008 Postal Coaching, 1

In triangle $ABC,\angle B > \angle C, T$ is the midpoint of arc $BAC$ of the circumcicle of $ABC$, and $I$ is the incentre of $ABC$. Let $E$ be point such that $\angle AEI = 90^0$ and $AE$ is parallel to $BC$. If $TE$ intersects the circumcircle of $ABC$ at $P(\ne T)$ and $\angle B = \angle IPB$, determine $\angle A$.

2024 Canadian Mathematical Olympiad Qualification, 3

Let $\vartriangle ABC$ be an acute triangle with $AB < AC$. Let $H$ be its orthocentre and $M$ be the midpoint of arc $BAC$ on the circumcircle. It is given that $B$, $H$, $M$ are collinear, the length of the altitude from $M$ to $AB$ is $1$, and the length of the altitude from $M$ to $BC$ is $6$. Determine all possible areas for $\vartriangle ABC$ .

2016 Sharygin Geometry Olympiad, 2

A circumcircle of triangle $ABC$ meets the sides $AD$ and $CD$ of a parallelogram $ABCD$ at points $K$ and $L$ respectively. Let $M$ be the midpoint of arc $KL$ not containing $B$. Prove that $DM \perp AC$. by E.Bakaev

2017 Czech And Slovak Olympiad III A, 5

Given is the acute triangle $ABC$ with the intersection of altitudes $H$. The angle bisector of angle $BHC$ intersects side $BC$ at point $D$. Mark $E$ and $F$ the symmetrics of the point $D$ wrt lines $AB$ and $AC$. Prove that the circle circumscribed around the triangle $AEF$ passes through the midpoint of the arc $BAC$

2020 Switzerland - Final Round, 2

Let $ABC$ be an acute triangle. Let $M_A, M_B$ and $M_C$ be the midpoints of sides $BC,CA$, respectively $AB$. Let $M'_A , M'_B$ and $M'_C$ be the the midpoints of the arcs $BC, CA$ and $AB$ respectively of the circumscriberd circle of triangle $ABC$. Let $P_A$ be the intersection of the straight line $M_BM_C$ and the perpendicular to $M'_BM'_C$ through $A$. Define $P_B$ and $P_C$ similarly. Show that the straight line $M_AP_A, M_BP_B$ and $M_CP_C$ intersect at one point.

2020 Kazakhstan National Olympiad, 4

The incircle of the triangle $ ABC $ touches the sides of $ AB, BC, CA $ at points $ C_0, A_0, B_0 $, respectively. Let the point $ M $ be the midpoint of the segment connecting the vertex $ C_0 $ with the intersection point of the altitudes of the triangle $ A_0B_0C_0 $, point $ N $ be the midpoint of the arc $ ACB $ of the circumscribed circle of the triangle $ ABC $. Prove that line $ MN $ passes through the center of incircle of triangle $ ABC $.

Croatia MO (HMO) - geometry, 2018.7

Given an acute-angled triangle $ABC$ in which $|AB| <|AC|$. Point $D$ is the midpoint of the shorter arc $BC$ of its circumcircle. The point $I$ is the center of its incircle, and the point $J$ is symmetric point of $I$ wrt line $BC$. The line $DJ$ intersects the circumcircle of the triangle $ABC$ at the point $E$ belonging to the arc $AB$. Prove that $|AI |= |IE|$.

2019 Peru EGMO TST, 2

Let $\Gamma$ be the circle of an acute triangle $ABC$ and let $H$ be its orthocenter. The circle $\omega$ with diameter $AH$ cuts $\Gamma$ at point $D$ ($D\ne A$). Let $M$ be the midpoint of the smaller arc $BC$ of $\Gamma$ . Let $N$ be the midpoint of the largest arc $BC$ of the circumcircle of the triangle $BHC$. Prove that there is a circle that passes through the points $D, H, M$ and $N$.

2018 Saudi Arabia GMO TST, 3

Let $C$ be a point lies outside the circle $(O)$ and $CS, CT$ are tangent lines of $(O)$. Take two points $A, B$ on $(O)$ with $M$ is the midpoint of the minor arc $AB$ such that $A, B, M$ differ from $S, T$. Suppose that $MS, MT$ cut line $AB$ at $E, F$. Take $X \in OS$ and $Y \in OT$ such that $EX, FY$ are perpendicular to $AB$. Prove that $X Y$ and $C M$ are perpendicular.

Croatia MO (HMO) - geometry, 2017.3

In triangle $ABC$, $|AB| <|BC|$ holds. Point $I$ is the center of the circle inscribed in that triangle. Let $M$ be the midpoint of the side $AC$, and $N$ be the midpoint of the arc $AC$ of the circumcircle of that triangle containing point $B$. Prove that $\angle IMA = \angle INB$.

2022 Bulgarian Spring Math Competition, Problem 10.2

Let $\triangle ABC$ have incenter $I$. The line $CI$ intersects the circumcircle of $\triangle ABC$ for the second time at $L$, and $CI=2IL$. Points $M$ and $N$ lie on the segment $AB$, such that $\angle AIM =\angle BIN = 90^{\circ}$. Prove that $AB=2MN$.

2024 Bangladesh Mathematical Olympiad, P9

Let $ABC$ be a triangle and $M$ be the midpoint of side $BC$. The perpendicular bisector of $BC$ intersects the circumcircle of $\triangle ABC$ at points $K$ and $L$ ($K$ and $A$ lie on the opposite sides of $BC$). A circle passing through $L$ and $M$ intersects $AK$ at points $P$ and $Q$ ($P$ lies on the line segment $AQ$). $LQ$ intersects the circumcircle of $\triangle KMQ$ again at $R$. Prove that $BPCR$ is a cyclic quadrilateral.

2023 Switzerland - Final Round, 7

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

2023 Estonia Team Selection Test, 3

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

Swiss NMO - geometry, 2020.2

Let $ABC$ be an acute triangle. Let $M_A, M_B$ and $M_C$ be the midpoints of sides $BC,CA$, respectively $AB$. Let $M'_A , M'_B$ and $M'_C$ be the the midpoints of the arcs $BC, CA$ and $AB$ respectively of the circumscriberd circle of triangle $ABC$. Let $P_A$ be the intersection of the straight line $M_BM_C$ and the perpendicular to $M'_BM'_C$ through $A$. Define $P_B$ and $P_C$ similarly. Show that the straight line $M_AP_A, M_BP_B$ and $M_CP_C$ intersect at one point.

2019 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ a triangle, $I$ the incenter, $D$ the contact point of the incircle with the side $BC$ and $E$ the foot of the bisector of the angle $A$. If $M$ is the midpoint of the arc $BC$ which contains the point $A$ of the circumcircle of the triangle $ABC$ and $\{F\} = DI \cap AM$, prove that $MI$ passes through the midpoint of $[EF]$.

Champions Tournament Seniors - geometry, 2019.2

The quadrilateral $ABCD$ is inscribed in the circle and the lengths of the sides $BC$ and $DC$ are equal, and the length of the side $AB$ is equal to the length of the diagonal $AC$. Let the point $P$ be the midpoint of the arc $CD$, which does not contain point $A$, and $Q$ is the point of intersection of diagonals $AC$ and $BD$. Prove that the lines $PQ$ and $AB$ are perpendicular.

2019 Saudi Arabia BMO TST, 3

The triangle $ABC$ ($AB > BC$) is inscribed in the circle $\Omega$. On the sides $AB$ and $BC$, the points $M$ and $N$ are chosen, respectively, so that $AM = CN$, The lines $MN$ and $AC$ intersect at point $K$. Let $P$ be the center of the inscribed circle of triangle $AMK$, and $Q$ the center of the excircle of the triangle $CNK$ tangent to side $CN$. Prove that the midpoint of the arc $ABC$ of the circle $\Omega$ is equidistant from the $P$ and $Q$.

2025 India STEMS Category A, 5

Let $ABC$ be an acute scalene triangle. Let $D, E$ be points on segments $AB, AC$ respectively, such that $BD=CE$. Prove that the nine-point centers of $ADE$, $ACD$, $ABC$, $AEB$ form a rhombus. [i]Proposed by Malay Mahajan and Siddharth Choppara[/i]