This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2019 BAMO, B

In the figure below, parallelograms $ABCD$ and $BFEC$ have areas $1234$ cm$^2$ and $2804$ cm$^2$, respectively. Points $M$ and $N$ are chosen on sides $AD$ and $FE$, respectively, so that segment $MN$ passes through $B$. Find the area of $\vartriangle MNC$. [img]https://cdn.artofproblemsolving.com/attachments/b/6/8b57b632191bdb3a27ab7c59e2376dab23950b.png[/img]

1983 All Soviet Union Mathematical Olympiad, 363

The points $A_1,B_1,C_1$ belong to $[BC],[CA],[AB]$ sides of the $ABC$ triangle respectively. The $[AA_1], [BB_1], [CC_1]$ segments split the $ABC$ onto $4$ smaller triangles and $3$ quadrangles. It is known, that the smaller triangles have the same area. Prove that the quadrangles have equal areas. What is the quadrangle area, it the small triangle has the unit area?

Estonia Open Senior - geometry, 1998.2.1

Tags: circles , geometry , area
Circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively lie on a plane such that that the circle $C_2$ passes through $O_1$. The ratio of radius of circle $C_1$ to $O_1O_2$ is $\sqrt{2+\sqrt3}$. a) Prove that the circles $C_1$ and $C_2$ intersect at two distinct points. b) Let $A,B$ be these points of intersection. What proportion of the area of circle is $C_1$ is the area of the sector $AO_1B$ ?

2002 May Olympiad, 2

A rectangular sheet of paper (white on one side and gray on the other) was folded three times, as shown in the figure: Rectangle $1$, which was white after the first fold, has $20$ cm more perimeter than rectangle $2$, which was white after the second fold, and this in turn has $16$ cm more perimeter than rectangle $3$, which was white after the third fold. Determine the area of the sheet. [img]https://cdn.artofproblemsolving.com/attachments/d/f/8e363b40654ad0d8e100eac38319ee3784a7a7.png[/img]

2010 Contests, 1b

The edges of the square in the figure have length $1$. Find the area of the marked region in terms of $a$, where $0 \le a \le 1$. [img]https://cdn.artofproblemsolving.com/attachments/2/2/f2b6ca973f66c50e39124913b3acb56feff8bb.png[/img]

2014 Iranian Geometry Olympiad (junior), P2

The inscribed circle of $\triangle ABC$ touches $BC, AC$ and $AB$ at $D,E$ and $F$ respectively. Denote the perpendicular foots from $F, E$ to $BC$ by $K, L$ respectively. Let the second intersection of these perpendiculars with the incircle be $M, N$ respectively. Show that $\frac{{{S}_{\triangle BMD}}}{{{S}_{\triangle CND}}}=\frac{DK}{DL}$ by Mahdi Etesami Fard

Ukrainian TYM Qualifying - geometry, VI.9

Tags: polygon , geometry , chord , area
Consider an arbitrary (optional convex) polygon. It's [i]chord [/i] is a segment whose ends lie on the boundary of the polygon, and itself belongs entirely to the polygon. Will there always be a chord of a polygon that divides it into two equal parts? Is it true that any polygon can be divided by some chord into parts, the area of each of which is not less than $\frac13$ the area of the polygon?

2000 Tournament Of Towns, 1

Tags: geometry , area , midpoint
The diagonals of a convex quadrilateral $ABCD$ meet at $P$. The sum of the areas of triangles $PAB$ and $PCD$ is equal to the sum of areas of triangles $PAD$ and $PCB$. Prove that $P$ is the midpoint of either $AC$ or $BD$. (Folklore)

III Soros Olympiad 1996 - 97 (Russia), 10.5

Tags: geometry , area
Two circles intersect at two points $A$ and $B$. The radii of these circles are equal to $R$ and $r$, respectively; the angle between the radii going to the points of intersection is equal to $a$. A chord $KM$ of length $b$ is taken in a circle of radius $r$. Straight lines $KA$, $KB$, $MA$ and $MB$ intersect the other circle for second time at four points. Find the area of the quadrilateral with vertices at these points.

2015 Portugal MO, 4

Let $[ABCD]$ be a parallelogram and $P$ a point between $C$ and $D$. The line parallel to $AD$ that passes through $P$ intersects the diagonal $AC$ in $Q$. Knowing that the area of $[PBQ]$ is $2$ and the area of $[ABP]$ is $6$, determine the area of $[PBC]$. [img]https://cdn.artofproblemsolving.com/attachments/0/8/664a00020065b7ad6300a062613fca4650b8d0.png[/img]

2017 Greece Junior Math Olympiad, 1

Let $ABCD$ be a square of side $a$. On side $AD$ consider points $E$ and $Z$ such that $DE=a/3$ and $AZ=a/4$. If the lines $BZ$ and $CE$ intersect at point $H$, calculate the area of the triangle $BCH$ in terms of $a$.

2023 German National Olympiad, 2

In a triangle, the edges are extended past both vertices by the length of the edge opposite to the respective vertex. Show that the area of the resulting hexagon is at least $13$ times the area of the original triangle.

2009 Hanoi Open Mathematics Competitions, 9

Let be given $ \vartriangle ABC$ with area $ (\vartriangle ABC) = 60$ cm$^2$. Let $R,S $ lie in $BC$ such that $BR = RS = SC$ and $P,Q$ be midpoints of $AB$ and $AC$, respectively. Suppose that $PS$ intersects $QR$ at $T$. Evaluate area $(\vartriangle PQT)$.

2006 Mathematics for Its Sake, 1

Let be the points $ K,L,M $ on the sides $ BC,CA,AB, $ respectively, of a triangle $ ABC. $ Show that at least one of the areas of the triangles $ MAL,KBM,LCK $ doesn't surpass a fourth of the area of $ ABC. $

1983 All Soviet Union Mathematical Olympiad, 366

Tags: area , vector , geometry
Given a point $O$ inside triangle $ABC$ . Prove that $$S_A * \overrightarrow{OA} + S_B * \overrightarrow{OB} + S_C * \overrightarrow{OC} = \overrightarrow{0}$$ where $S_A, S_B, S_C$ denote areas of triangles $BOC, COA, AOB$ respectively.

2018 South Africa National Olympiad, 4

Let $ABC$ be a triangle with circumradius $R$, and let $\ell_A, \ell_B, \ell_C$ be the altitudes through $A, B, C$ respectively. The altitudes meet at $H$. Let $P$ be an arbitrary point in the same plane as $ABC$. The feet of the perpendicular lines through $P$ onto $\ell_A, \ell_B, \ell_C$ are $D, E, F$ respectively. Prove that the areas of $DEF$ and $ABC$ satisfy the following equation: $$ \operatorname{area}(DEF) = \frac{{PH}^2}{4R^2} \cdot \operatorname{area}(ABC). $$

1968 German National Olympiad, 2

Which of all planes, the one and the same body diagonal of a cube with the edge length $a$, cuts out a cut figure with the smallest area from the cube? Calculate the area of such a cut figure. [hide=original wording]Welche von allen Ebenen, die eine und dieselbe Korperdiagonale eines Wurfels mit der Kantenlange a enthalten, schneiden aus den W¨urfel eine Schnittfigur kleinsten Flacheninhaltes heraus? Berechnen Sie den Fl¨acheninhalt solch einer Schnittfigur![/hide]

2002 Junior Balkan Team Selection Tests - Romania, 2

The diagonals $AC$ and $BD$ of a convex quadrilateral $ABCD$ meet at $O$. Let $m$ be the measure of the acute angle formed by these diagonals. A variable angle $xOy$ of measure $m$ intersects the quadrilateral by a convex quadrilateral of constant area. Prove that $ABCD$ is a square.

2013 BMT Spring, 8

Tags: conic , geometry , parabola , area
A parabola has focus $F$ and vertex $V$ , where $VF = 1$0. Let $AB$ be a chord of length $100$ that passes through $F$. Determine the area of $\vartriangle VAB$.

IV Soros Olympiad 1997 - 98 (Russia), 11.5

The sides of the parallelogram serve as the diagonals of the four squares. The vertices of the squares lying in the part of the plane external to the parallelogram (the sides of the squares emerging from these vertices do not have common points with the parallelogram) serve as the vertices of a quadrilateral of area $a$, the four vertices opposite to them form a quadrilateral of area $b$. Find the area of the parallelogram.

2006 IMO Shortlist, 10

Assign to each side $b$ of a convex polygon $P$ the maximum area of a triangle that has $b$ as a side and is contained in $P$. Show that the sum of the areas assigned to the sides of $P$ is at least twice the area of $P$.

2020 Paraguay Mathematical Olympiad, 3

Tags: geometry , area
In triangle $ABC$, side $AC$ is $8$ cm. Two segments are drawn parallel to $AC$ that have their ends on $AB$ and $BC$ and that divide the triangle into three parts of equal area. What is the length of the parallel segment closest to $AC$?

Denmark (Mohr) - geometry, 2000.1

Tags: midpoint , square , area
The quadrilateral $ABCD$ is a square of sidelength $1$, and the points $E, F, G, H$ are the midpoints of the sides. Determine the area of quadrilateral $PQRS$. [img]https://1.bp.blogspot.com/--fMGH2lX6Go/XzcDqhgGKfI/AAAAAAAAMXo/x4NATcMDJ2MeUe-O0xBGKZ_B4l_QzROjACLcBGAsYHQ/s0/2000%2BMohr%2Bp1.png[/img]

2020 Yasinsky Geometry Olympiad, 6

A cube whose edge is $1$ is intersected by a plane that does not pass through any of its vertices, and its edges intersect only at points that are the midpoints of these edges. Find the area of the formed section. Consider all possible cases. (Alexander Shkolny)

2006 Chile National Olympiad, 2

In a triangle $ \vartriangle ABC $ with sides integer numbers, it is known that the radius of the circumcircle circumscribed to $ \vartriangle ABC $ measures $ \dfrac {65} {8} $ centimeters and the area is $84$ cm². Determine the lengths of the sides of the triangle.