This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2005 Sharygin Geometry Olympiad, 6

Side $AB$ of triangle $ABC$ was divided into $n$ equal parts (dividing points $B_0 = A, B_1, B_2, ..., B_n = B$), and side $AC$ of this triangle was divided into $(n + 1)$ equal parts (dividing points $C_0 = A, C_1, C_2, ..., C_{n+1} = C$). Colored are the triangles $C_iB_iC_{i+1}$ (where $i = 1,2, ..., n$). What part of the area of the triangle is painted over?

VMEO I 2004, 4

In a quadrilateral $ABCD$ let $E$ be the intersection of the two diagonals, I the center of the parallelogram whose vertices are the midpoints of the four sides of the quadrilateral, and K the center of the parallelogram whose sides pass through the points. divide the four sides of the quadrilateral into three equal parts (see illustration ). [img]https://cdn.artofproblemsolving.com/attachments/1/c/8f2617103edd8361b8deebbee13c6180fa848b.png[/img] a) Prove that $\overrightarrow{EK} =\frac43 \overrightarrow{EI}$. b) Prove that $$\lambda_A \overrightarrow{KA} +\lambda_B \overrightarrow{KB} + \lambda_C \overrightarrow{KC} + \lambda_D \overrightarrow{KD} = \overrightarrow{0}$$ , where $$\lambda_A=1+\frac{S(ADB)}{S(ABCD)},\lambda_B=1+\frac{S(BCA)}{S(ABCD)},\lambda_C=1+\frac{S(CDB)}{S(ABCD)},\lambda_D=1+\frac{S(DAC)}{S(ABCD)}$$ , where $S$ is the area symbol.

II Soros Olympiad 1995 - 96 (Russia), 11.8

Tags: ratio , area , geometry
The following is known about the quadrilateral $ABCD$: triangles $ABC$ and $CDA$ are equal in area, the area of triangle $BCD$ is $k$ times greater than the area of triangle $DAB$, the bisectors of angles $ABC$ and $CDA$ intersect on the diagonal $AC$, straight lines $AC$ and $BD$ are not perpendicular. Find the ratio $AC/BD$.

Kyiv City MO 1984-93 - geometry, 1986.10.5

Let $E$ be a point on the side $AD$ of the square $ABCD$. Find such points $M$ and $K$ on the sides $AB$ and $BC$ respectively, such that the segments $MK$ and $EC$ are parallel, and the quadrilateral $MKCE$ has the largest area.

2020 Jozsef Wildt International Math Competition, W1

Consider the ellipsoid$$\frac{x^2}{a^2}+\frac{y^2}{a^2}+\frac{z^2}{b^2}=1$$($a$ and $b > 0$) and the ellipse $E$ which is the intersection of the ellipsoid with the plane of equation$$mx + ny + pz = 0$$where the point $P = [m, n, p]$ is a random point from the unit sphere $(m^2 + n^2 + p^2 = 1)$. Consider the random variable $A_E$ the area of the ellipse $E$. If the point $P$ is chosen with uniform distribution with respect to the area on the unit sphere, what is the expectation of $A_E$ ?

2004 Greece Junior Math Olympiad, 2

Let $ABCD$ be a rectangle. Let $K,L$ be the midpoints of $BC, AD$ respectively. From point $B$ the perpendicular line on $AK$, intersects $AK$ at point $E$ and $CL$ at point $Z$. a) Prove that the quadrilateral $AKZL$ is an isosceles trapezoid b) Prove that $2S_{ABKZ}=S_{ABCD}$ c) If quadrilateral $ABCD$ is a square of side $a$, calculate the area of the isosceles trapezoid $AKZL$ in terms of side $BC=a$

2005 Junior Tuymaada Olympiad, 2

Points $ X $ and $ Y $ are the midpoints of the sides $ AB $ and $ AC $ of the triangle $ ABC $, $ I $ is the center of its inscribed circle, $ K $ is the point of tangency of the inscribed circles with side $ BC $. The external angle bisector at the vertex $ B $ intersects the line $ XY $ at the point $ P $, and the external angle bisector at the vertex of $ C $ intersects $ XY $ at $ Q $. Prove that the area of the quadrilateral $ PKQI $ is equal to half the area of the triangle $ ABC $.

2018 Romania National Olympiad, 2

In the square $ABCD$ the point $E$ is located on the side $[AB]$, and $F$ is the foot of the perpendicular from $B$ on the line $DE$. The point $L$ belongs to the line $DE$, such that $F$ is between $E$ and $L$, and $FL = BF$. $N$ and $P$ are symmetric of the points $A , F$ with respect to the lines $DE, BL$, respectively. Prove that: a) The quadrilateral $BFLP$ is square and the quadrilateral $ALND$ is rhombus. b) The area of the rhombus $ALND$ is equal to the difference between the areas of the squares $ABCD$ and $BFLP$.

2023 Auckland Mathematical Olympiad, 2

Tags: geometry , area
Triangle $ABC$ of area $1$ is given. Point $A'$ lies on the extension of side $BC$ beyond point $C$ with $BC = CA'$. Point $B'$ lies on extension of side $CA$ beyond $A$ and $CA = AB'$. $C'$ lies on extension of $AB$ beyond $B$ with $AB = BC'$. Find the area of triangle $A'B'C'$.

1993 Tournament Of Towns, (384) 2

Tags: geometry , area
The square $ PQRS$ is placed inside the square $ABCD$ in such a way that the segments $AP$, $BQ$, $CR$ and $DS$ intersect neither each other nor the square $PQRS$. Prove that the sum of areas of quadrilaterals $ABQP$ and $CDSR$ is equal to the sum of the areas of quadrilaterals $BCRQ$ and $DAPS$. (Folklore)

2016 BMT Spring, 17

Consider triangle $ABC$ in $xy$-plane where $ A$ is at the origin, $ B$ lies on the positive $x$-axis, $C$ is on the upper right quadrant, and $\angle A = 30^o$, $\angle B = 60^o$ ,$\angle C = 90^o$. Let the length $BC = 1$. Draw the angle bisector of angle $\angle C$, and let this intersect the $y$-axis at $D$. What is the area of quadrilateral $ADBC$?

2003 BAMO, 3

A lattice point is a point $(x, y)$ with both $x$ and $y$ integers. Find, with proof, the smallest $n$ such that every set of $n$ lattice points contains three points that are the vertices of a triangle with integer area. (The triangle may be degenerate, in other words, the three points may lie on a straight line and hence form a triangle with area zero.)

2020 Princeton University Math Competition, 7

Let $X, Y$ , and $Z$ be concentric circles with radii $1$, $13$, and $22$, respectively. Draw points $A, B$, and $C$ on $X$, $Y$ , and $Z$, respectively, such that the area of triangle $ABC$ is as large as possible. If the area of the triangle is $\Delta$, find $\Delta^2$.

2019 Yasinsky Geometry Olympiad, p3

Tags: geometry , area , hexagon
Let $ABCDEF$ be the regular hexagon. It is known that the area of the triangle $ACD$ is equal to $8$. Find the hexagonal area of $ABCDEF$.

1966 IMO Shortlist, 52

A figure with area $1$ is cut out of paper. We divide this figure into $10$ parts and color them in $10$ different colors. Now, we turn around the piece of paper, divide the same figure on the other side of the paper in $10$ parts again (in some different way). Show that we can color these new parts in the same $10$ colors again (hereby, different parts should have different colors) such that the sum of the areas of all parts of the figure colored with the same color on both sides is $\geq \frac{1}{10}.$

Kyiv City MO 1984-93 - geometry, 1991.9.4

A parallelogram is inscribed in a quadrilateral, two opposite vertices of which are the midpoints of the opposite sides of the quadrilateral. Determine the area of ​​such a parallelogram if the area of ​​the quadrilateral is equal to $S_o$.

1976 Bundeswettbewerb Mathematik, 2

Each of the two opposite sides of a convex quadrilateral is divided into seven equal parts, and corresponding division points are connected by a segment, thus dividing the quadrilateral into seven smaller quadrilaterals. Prove that the area of at least one of the small quadrilaterals equals $1\slash 7$ slash of the area of the large quadrilateral.

2020 Ukrainian Geometry Olympiad - December, 2

Tags: ratio , area , geometry
Let $ABCD$ be a cyclic quadrilateral such that $AC =56, BD = 65, BC>DA$ and $AB: BC =CD: DA$. Find the ratio of areas $S (ABC): S (ADC)$.

2019 Yasinsky Geometry Olympiad, p5

On the sides of the right triangle, outside are constructed regular nonagons, which are constructed on one of the catheti and on the hypotenuse, with areas equal to $1602$ $cm^2$ and $2019$ $cm^2$, respectively. What is the area of the nonagon that is constructed on the other cathetus of this triangle? (Vladislav Kirilyuk)

1970 Poland - Second Round, 2

On the sides of the regular $ n $-gon, $ n + 1 $ points are taken dividing the perimeter into equal parts. At what position of the selected points is the area of the convex polygon with these $ n + 1 $ vertices a) the largest, b) the smallest?

1969 Spain Mathematical Olympiad, 4

Tags: area , octagon , square , geometry
A circle of radius $R$ is divided into $8$ equal parts. The points of division are denoted successively by $A, B, C, D, E, F , G$ and $H$. Find the area of the square formed by drawing the chords $AF$ , $BE$, $CH$ and $DG$.

1997 Brazil Team Selection Test, Problem 5

Let $ABC$ be an acute-angled triangle with incenter $I$. Consider the point $A_1$ on $AI$ different from $A$, such that the midpoint of $AA_1$ lies on the circumscribed circle of $ABC$. Points $B_1$ and $C_1$ are defined similarly. (a) Prove that $S_{A_1B_1C_1}=(4R+r)p$, where $p$ is the semi-perimeter, $R$ is the circumradius and $r$ is the inradius of $ABC$. (b) Prove that $S_{A_1B_1C_1}\ge9S_{ABC}$.

Kvant 2020, M2590

Tags: geometry , area
In an acute triangle $ABC$ the point $O{}$ is the circumcenter, $H_1$ is the foot of the perpendicular from $A{}$ onto $BC$, and $M_H$ and $N_H$ are the projections of $H_1$ on $AC$ and $AB{}$, respectively. Prove that the polyline $M_HON_H$ divides the triangle $ABC$ in two figures of equal area. [i]Proposed by I. A. Kushner[/i]

2004 Swedish Mathematical Competition, 6

Prove that every convex $n$-gon of area $1$ contains a quadrilateral of area at least $\frac12 $. .

2020 Novosibirsk Oral Olympiad in Geometry, 1

Tags: geometry , area , dodecagon
All twelve points on the circle are at equal distances. The only marked point inside is the center of the circle. Determine which part of the whole circle in the picture is filled in. [img]https://cdn.artofproblemsolving.com/attachments/9/0/9a6af9cef6a4bb03fb4d3eef715f3fd77c74b3.png[/img]